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Three-Dimensional Noncoaxial Plasticity Modeling of Shear
Band Formation in Geomaterials

J. G. Qian1; J. Yang, M.ASCE2; and M. S. Huang3

Abstract: Accurate prediction of shear band formation in geomaterials is crucial in the solution of various stability problems in
geotechnical engineering. The initiation of shear band is strongly dependent on the constitutive description of the prelocalization homo-
geneous deformation. Conventional plasticity models assume that coaxiality exists between the directions of principal stresses and the
directions of plastic strain increments. Accumulating evidence has however shown that this assumption is not appropriate. In this paper,
a noncoaxial constitutive modeling platform is presented in a general three-dimensional stress space. It is shown that the classical
vertex-like structure, which has been widely adopted to describe the noncoaxial constitutive response, only represents the two-dimensional
condition. Examples are presented to demonstrate the capability of the modeling platform in capturing the initiation and orientation of
shear band in a granular soil. The significance of the noncoaxiality effects is illustrated by comparisons of the predictions produced by
coaxial and noncoaxial �both two-dimensional and three-dimensional� plasticity models.

DOI: 10.1061/�ASCE�0733-9399�2008�134:4�322�

CE Database subject headings: Bifurcations; Constitutive models; Three-dimensional models; Geomaterials; Plasticity.
Introduction

Strain localization is a typical feature of geomaterials such as
soils and rocks when they undergo nonhomogeneous deforma-
tion. The zone of localized deformation is commonly referred to
as shear band or simply rupture plane. Localized deformation is
generally followed by reduction in the overall strength of the
material as the loading proceeds, suggesting the importance of
accurately predicting shear band formation in geotechnical appli-
cations. Over the past decades there have been numerous experi-
mental investigations into the strain localization of granular soils
�e.g., Arthur et al. 1977; Desrues et al. 1985; Hammad 1991; Han
and Drescher 1993; Chu et al. 1996; Mooney et al. 1998; Wang
and Lade 2000; Yamamuro and Shapiro 2002; Alshibli et al.
2003�. These experimental works have revealed that the shear
band formation is influenced by a number of factors, including the
porosity of the material, inherent and stress-induced anisotropy of
the material, particle size and shape of the material, and the level
of confining stress.

It should be emphasized that the overall material response ob-
served in the laboratory is a result of various micromechanical
processes such as particle rolling and sliding in granular soils and
microcracking in brittle rocks. Ideally, a localization model
should capture all of these processes at the microscopic level.
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However, limitations with laboratory testing capabilities and
mathematical modeling techniques render the microscopic de-
scription of the constitutive behavior very difficult. The macro-
scopic approach involving the theory of plasticity is usually
adopted �Vardoulakis 1980; Vermeer 1982; Desrues et al. 1985;
Ottosen and Runesson 1991; Bardet 1991�. In a standard plastic-
ity model, the directions of principal stresses and the directions of
plastic strain increments are implicitly assumed to be coaxial.
However, accumulating evidence from experiments has shown
that the plastic strain rate is dependent not only on the current
state of stress but also on the current stress rate. In particular, a
permanent plastic deformation can even accumulate when princi-
pal stresses rotate without any change in amplitude �Ishihara and
Towhata 1983; Pradel et al. 1990; Gutierrez et al. 1991; Yang
et al. 2007�. These observations suggest the importance of ac-
counting for the noncoaxiality between the principal directions of
the stress and plastic strain increment in constitutive modeling.

Several theories have been developed to describe the non-
coaxial behavior of engineering materials. Of the most notable is
that by Rudnicki and Rice �1975�, who pointed out that the bifur-
cation analysis with a constitutive formulation involving a smooth
yield surface tended to predict excessively negative values of the
tangent modulus for the onset of localization. To tackle this prob-
lem, they added a vertex-like structure to an isotropic hardening
constitutive model to facilitate inception of shear band in the
strain hardening region. The introduction of a vertex-like struc-
ture leads directly to a noncoaxial plastic flow rule and the effect
of softened tangent modulus in the constitutive model. In line
with this concept, several constitutive models for granular mate-
rials were revised to include noncoaxiality in the study of strain
localization in soils �Vardoulakis and Graf 1985; Papamichos and
Vardoulakis 1995�. Results have shown that the noncoaxial mod-
els generally provide more reasonable predictions of shear band
formation than the coaxial models.

The classical “vertex-like structure” proposed by Rudnicki and
Rice �1975�, as will be elaborated on later, does not represent the

noncoaxial constitutive response in a general three-dimensional
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tensorial space. Keeping this in mind, this paper presents a
noncoaxial plasticity modeling platform in a general three-
dimensional tensorial space. The effects of noncoaxiality on
shear band formation in granular soils are investigated by com-
parison of the predictions from coaxial and noncoaxial models
�in both two- and three-dimensional spaces� with experimental
observations. Stress probe tests are also conducted in the three-
dimensional noncoaxial deviatoric stress space to show the effects
of noncoaxiality.

Coaxial and Noncoaxial Flow Theories

Coaxial Flow Rule

In the theory of plasticity, coaxiality is referred to as the coinci-
dence between the principal directions of the stress, �ij, and the
rate of plastic deformation, �̇ij

p . This condition can be expressed as

�̇ik
p �kj = �ik�̇kj

p �1�

In a standard plasticity model, the plastic potential function, Q,
is defined as a function of three stress invariants, i.e.,
Q=Q�I1 ,J2 ,J3�, where I1=first invariant of the stress tensor, �ij;
and J2, J3=second and third invariants of the deviatoric stress
tensor, sij. The three invariants are given as follows:

I1 = �ii, J2 = 1
2sijsij, J3 = 1

3sijsjkski �2�

The rate of plastic deformation is then given by

�̇ij
p = �̇

�Q

��ij
= �̇� �Q

�I1

�I1

��ij
+

�Q

�J2

�J2

��ij
+

�Q

�J3

�J3

��ij
� �3�

where �̇=non-negative scalar that varies during the plastic load-
ing history. Eq. �3� can be rewritten in the following form

�̇ij
p = �̇�a0�ij + a1sij + a2Sij� �4�

where �ij =Kronecker delta, and Sij is given by

Sij = sikskj −
2

3
J2�ij −

3

2

J3

J2
sij �5�

It is evident that the three coefficients, a0, a1, and a2=functions of
the stress invariants, i.e.

a0 =
�Q

�I1
, a1 =

�Q

�J2
+

3

2

�Q

�J3

J3

J2
, a2 =

�Q

�J3
�6�

Note that �ij =isotropic tensor and the stress tensor sij shares
the same principal directions with the tensor Sij. This implies that
the standard plasticity model assumes an inherent coaxiality be-
tween principal directions of the stress and the plastic deforma-
tion rate. For purposes of clarity, Eq. �4� can be rewritten in the
following form

�̇ij
cp = �ij�̇kk

cp + ėij
cp �7�

where the superscript c stands for coaxiality; �̇kk
cp represents the

volumetric plastic strain rate; and ėij
cp represents the deviatoric

plastic strain rate. Further, the deviatoric plastic strain rate ėij
cp is

decomposed into two components: one is related to sij and the
other is related to Sij.

Now, consider a special case in which the plastic potential is
independent of the third stress invariant, i.e., a two-dimensional

˙cp
case. The deviatoric plastic strain rate eij can be given as

JOU
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ėij
cp = a1�̇sij �8�

Clearly, the above expression indicates that the rate of deviatoric
plastic strain is always coaxial with the deviatoric stress if the
third stress invariant is neglected.

Noncoaxial Flow Rule in Deviatoric Stress Space

As mentioned earlier, there is increasing experimental evidence
showing that the plastic strain increment is dependent not only
on the current state of stress but also on the stress rate. In other
words, there exists an incremental nonlinear plastic response
or noncoaxial response. The yield vertex theory proposed by
Rudnicki and Rice �1975� has been widely accepted in tackling
the problem of noncoaxiality. In the yield vertex theory, the rate
of noncoaxial plastic deformation, �̇ij

np, is assumed to be linearly
dependent on the noncoaxial stress rate, ŝij

n , i.e.

�̇ij
np = ėij

np =
1

Ht
ŝij

n �9�

where the superscript n represents noncoaxiality; and Ht denotes
the plastic modulus governing the response to the stress rate tan-
gential to the yield surface, ŝij

n , which is given by

ŝij
n = �ŝij −

ŝklskl

smnsmn
sij� �10�

Note that an assumption is included in Eq. �9� that the noncoaxial
plastic strain rate consists only of the deviatoric part. Also note
that �̇ij

np is orthogonal to �̇ij
cp, because ŝij

n is always orthogonal to
sij, Sij, and �ij. As a result, the relationship expressed in Eq. �9�
only describes the noncoaxial deformation in a two-dimensional
deviatoric stress space, as illustrated in Fig. 1�a�, but is not valid
in a three-dimensional tensorial space �ij −sij −Sij as shown in
Fig. 1�b�. This notion is elaborated on below.

Assuming that the stress rate ŝij is proportional to Sij and equal

to �̇Sij ��̇�0�, the noncoaxial plastic strain rate can be deter-
mined from Eq. �10� as

ėij
np =

1

Ht

��̇Sij −
�̇Sklskl

smnsmn
sij� =

1

Ht
�̇Sij �11�

The above expression implies that the “noncoaxial” plastic strain
rate is actually coaxial with the stress Sij in the three-dimensional
tensorial space.

In order to model the noncoaxial behavior in the three-

Fig. 1. Schematics of definition of ėij
np in deviatoric stress space: �a�

two-dimensional space; �b� three-dimensional space
dimensional space, one should formulate the noncoaxial strain
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rate in such a manner that it is independent of the tensorial plan
sij −Sij. Here, we propose that the rate of noncoaxial stress is
formulated in the form as follows:

ŝij
n = ŝij −

ŝklskl

smnsmn
sij −

ŝklSkl

SmnSmn
Sij �12�

It can be shown that ŝij
n defined by Eq. �12� is a component tensor

of ŝij, and is orthogonal to �ij, sij, and Sij, i.e.

ŝij
n �ij = 0, ŝij

n sij = 0, ŝij
n Sij = 0 �13�

Recalling that Sij is dependent on the third stress invariant,
Eq. �12� can be reduced to the one given by Rundnicki and Rice
�1975� for the two-dimensional case where the third stress invari-
ant is not involved.

Elastic-Plastic Stiffness Incorporating Noncoaxiality

In this section, we will establish the elastic-plastic stiffness tensor
incorporating noncoaxiality in the three-dimensional tensorial
space. Based on the preceding discussion, the noncoaxial strain
rate can be given as

�̇ij
np = ėij

np =
1

Ht
�ŝij −

ŝklskl

spqspq
sij −

ŝklSkl

SpqSpq
Sij� �14�

Denote that

�̇ij
np = ėij

np = Cijkl
np �̂kl �15�

where Cijkl
np =noncoaxial compliance tensor; and �̂kl=stress rate.

From Eqs. �14� and �15� we have

Cijkl
np =

1

Ht
��ik� jl + �il� jk

2
−

�kl�ij

�mn�mn
−

sijskl

smnsmn
−

SijSkl

SmnSmn
� �16�

Note that Cijkl
np has the property of symmetry: Cijkl

np =Cklij
np =Cjikl

np

=Cijlk
np .
When the yield function is independent of the third stress in-

variant, Eq. �16� can be simplified as

Cijkl
np =

1

Ht
��ik� jl + �il� jk

2
−

�ij�kl

�mn�mn
−

sijskl

smnsmn
� �17�

For the triaxial state where the third stress invariant is a con-
stant �i.e., the Lode angle is 30° for triaxial compression and −30°
for triaxial tension�, the compliance tensor Cijkl

np has the following
form:

Cijkl
np =

1

Ht
��ik� jl + �il� jk

2
−

�ij�kl

3
−

sijskl

smnsmn
� �18�

For the plane strain state where all out-of-plane deformations
are neglected and, for simplicity, the out-of-plane stresses are
neglected as well, the compliance tensor Cijkl

np takes the form as
follows:

Cijkl
np =

1

Ht
��ik� jl + �il� jk

2
−

�ij�kl

2
−

sijskl

smnsmn
� �19�

The stress rate, �̂kl, can be determined by

�̂kl = Dklmn
e �̇mn

e = Dklmn
e ��̇mn − �̇mn

cp − �̇mn
np � �20�

where Dklmn
e =elastic stiffness tensor; �̇mn

e =elastic strain rate; and
˙
�mn=total strain rate.
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Noting the following relations:

Cijkl
np Dklmn

e = 2GCijmn
np �21�

Cijmn
np �̇mn

cp = 0 �22�

Cijmn
np �̇mn

np =
1

Ht
�̇ij

np �23�

the noncoaxial plastic strain rate can be expressed in terms of Cijkl
np

as

�̇ij
np =

2GHt

Ht + 2G
Cijmn

np �̇mn �24�

where G=elastic shear modulus.
On the other hand, the coaxial plastic strain rate can be ex-

pressed as

�̇ij
cp = �̇

�Q

��ij
=

�Q

��ij

�F

��st
Dstkl

e �̇kl

Hp +
�F

��st
Dstkl

e �Q

��kl

�25�

where F=F��ij ,H�=0 describes a general yield function; and Hp

denotes the plastic hardening modulus.
Based on Eqs. �24� and �25�, the total plastic strain rate is

given as

�̇ij
p = �̇ij

cp + �̇ij
np =�

�Q

��ij

�F

��st
Dstkl

e

Hp +
�F

��st
Dstkl

e �Q

��kl

+
2HtG

Ht + 2G
Cijkl

np ��̇kl

�26�

The rate form of the stress-strain relationship is then formu-
lated as

�̂ij = Dijkl
ep �̇kl = Dijkl

e ��̇kl − �̇kl
p �

=�Dijkl
e −

Dijmn
e �Q

��mn

�F

��st
Dstkl

e

Hp +
�F

��st
Dstkl

e �Q

��kl

+
2HtG

Ht + 2G
Dijmn

e Cmnkl
np ��̇kl

�27�

From Eq. �27�, the elastic-plastic stiffness tensor incorporating
noncoaxiality in the three-dimensional tensorial space can be
derived as

Dijkl
ep = Dijkl

e − Dijmn
e �

�Q

��mn

�F

��st

Hp +
�F

��mn
Dmnst

e �Q

��st

+
Ht

Ht + 2G
Cmnst

np �Dstkl
e

�28�

The condition for the onset of the shear band is then deter-

mined as �Rice and Rudnicki 1980�

34(4): 322-329 
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det�Aik�n�� = 0 �29�

where Aik=njDijkl
ep nl−1 /2��ik+� jknjni−�ijnjnk−� jl�iknjnl�; n

�or ni��vector normal to shear band; and Dijkl
ep =elasto-plastic

constitutive stiffness derived in Eq. �28�.

Stress Probe Tests of Noncoaxial Model

As an example, a three-dimensional coaxial, elasto-plastic model
for frictional materials �Pietruszczak and Stolle 1987� is revised
here in the proposed noncoaxial modeling framework to include
the noncoaxiality effects. The yield function and plastic potential
function are given as follows:

F = q − � · g���� · p = 0 �30�

Q = q + �c · p · g���� · ln� p

p0
� = 0 �31�

where

Fig. 2. Stress probe tests in three-dimensional deviatoric stress space

Fig. 3. Noncoaxial and coax
JOU

 J. Eng. Mech., 2008, 1
q = �3

2
sijsij�1/2

, p =
�ii

3
, � =

q

p
= � f

�s
cp

A + �s
cp

� f =
6 sin � f

3 − sin � f
, �s

cp =� �̇s
cpdt =� �2

3
ėij

cpėij
cp�1/2

dt

g���� =
�3 − sin ��

�3 − sin �� + �2sin ��1 − sin 3��

�−
	

6

 �� 


	

6
�

�� =
1

3
sin−1�−

3�3

2

J3

J2
3/2� �32�

It is evident that �=mobilized friction angle; � f =peak friction
angle; �c represents the value of � at �̇kk

p =0; p0= initial confining
pressure; and A=material constant.

Stress Probe Tests in Three-Dimensional Noncoaxial
Stress Space

The stress probe tests in the three-dimensional noncoaxial devia-
toric stress space are illustrated in Fig. 2. The tensor of the out-
ward normal of the yield surface can be expressed as

f̄ i j =
�F�I1,J2,J3�

�sij
= b1sij + b2Sij �33�

where the coefficients b1 and b2 are analogous to a1 and a2 in
Eq. �4�.

The noncoaxiality between f̄ i j and dsij �the stress increment�
can be characterized using a deviation angle � defined as follows
�Budiansky 1959�

iatoric strains in probe tests
ial dev
RNAL OF ENGINEERING MECHANICS © ASCE / APRIL 2008 / 325
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cos � =
f̄ i jdsij

� f̄ kl f̄ kl�1/2�dskldskl�1/2
�34�

where �=0° and ��0° represent coaxiality and noncoaxiality

between f̄ i j and dsij. The direction of dsij varies as � changes from

−180 to 180° in the noncoaxial plane dsij
n − f̄ i j �Fig. 2�.

Another parameter, �, defined as a deviation angle between
dsij

n and the projective component of dsij on the yield surface, is
introduced as follows:

cos � =
dsij�dsij

n

�dskl� dskl� �1/2�dskl
n dskl

n �1/2 �35�

where

dsij� = dsij −
f̄ kldskl

f̄ kl f̄ kl

f̄ ij

Now, assume that the initial stress state is isotropic with
�10=�20=�30=200 kPa. The probe tests are conducted in such a
manner that �3 is kept constant while �1 and �2 vary. The probe
tests are started at the state of �1=900 kPa and �2=210 kPa.
Given a small stress increment 	dsij	= �dskldskl�1/2=1.0 kPa at this
state, the incremental noncoaxial and coaxial plastic strains are
computed and shown in Fig. 3 as a function of � and �. The
model parameters used in the computation are given in Table 1.
As will be described in the next section, these parameters are
calibrated from the biaxial test results of Han and Drescher
�1993� for Ottawa sand.

It can be seen that the noncoaxial strain always occurs under
the condition of ��0° and ��90°, with the largest values oc-
curring in the case of �=0°. By comparison, the coaxial devia-
toric strain is found to be independent of the angle �. If the effect
of noncoaxiality is ignored, the stress-strain response will be to-
tally elastic when the direction of the stress increment satisfies the
condition �=90° and �=90–180° or �=−90–−180°.

Deformation Localization Analysis

Compared to the triaxial and true triaxial tests, a more complete
and clearer strain localization response can be observed in biaxial
tests. A series of high-quality biaxial tests performed by Han and
Drescher �1993� are used here as a benchmark. A bifurcation
analysis for biaxial tests is traditionally conducted as a two-
dimensional plane strain problem by ignoring the out-of-plane
deformation. In addition to this traditional treatment, the problem
will also be analyzed here as a three-dimensional problem by

Table 1. Parameters for Three-Dimensional and Two-Dimensional
Noncoaxial Models

Elastic
parameters

Plastic parameters

Coaxial
parameters

Noncoaxial
parameters

E=175 MPa
� f = 
1.70 for 3D

0.66 for 2D �
�=0.1667

�c= 
0.965 for 3D

0.36 for 2D �
Ht=2.5 MPa

A=0.001
including the influence of the third stress invariant.
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The test material used in Han and Drescher �1993� was coarse,
poorly graded Ottawa sand with an initial void ratio between 0.32
and 0.33. All tests were performed under displacement controlled
axial loading with the displacement rate of 0.2 mm /min. The
specimens were subjected to initial confining pressures of 50,
100, 200, and 400 kPa, respectively. Typical experimental results
at the confining pressure of 200 kPa are shown in Fig. 4. The
prelocalization response is assumed to be the constitutive behav-
ior in a homogeneous state. The model parameters, � f, �c, and A,
are calibrated using the prelocalization response. The elastic pa-
rameters E and � are directly obtained from Han and Dresher
�1993�. The noncoaxial parameter, Ht, which governs the incre-
mental nonlinear response, is preferred to calibrate from the ex-
periments with principal stress rotation. As there was no stress
rotation test in Han and Drescher �1993�, Ht is approximately

Fig. 4. Prebifurcation response at confining pressure of 200 kPa: �a�
stress ratio versus shear strain; �b� volumetric strain versus shear
strain
estimated here by matching the bifurcation point in the case of

34(4): 322-329 
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confining pressure of 200 kPa �Fig. 5�. All model parameters are
summarized in Table 1.

As shown in Fig. 5, the noncoaxial parameter Ht has a pro-
found effect on the bifurcation state. The discrepancy between
the prediction produced by the coaxial flow theory �Ht=� and
the experimental observation is significant. However, when the
value of Ht decreases, the occurrence of bifurcation is delayed
and a reasonable agreement is obtained at Ht=2.5 MPa.

Fig. 6 shows the shear deformation ��1−�2� at bifurcation as
affected by the plastic modulus, Ht. It is noted that in both the
two-dimensional and three-dimensional noncoaxial modeling, the
shear strain at bifurcation can be reasonably predicted by setting
the plastic modulus to be 2.0–3.0 MPa. By defining ��1−�2�max

as the predicted shear strain at bifurcation and Ht�max� as the
corresponding plastic modulus, it is of interest to examine the
dependence of ��1−�2�max and Ht�max� on the confining pressure.
The results of analysis are shown in Figs. 7 and 8, indicating that
both ��1−�2�max and Ht�max� tend to increase with the initial con-
fining pressure.

Fig. 5. Effect of plastic modulus on bifurcation �p0=200 kPa�

Fig. 6. Effect of plastic modulus on shear strain at bifurcation
�p0=200 kPa�
JOU
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Figs. 9–11 compare the predictions for shear band inclination
angle, shear strain at bifurcation, and dilatancy at bifurcation,
respectively, with the experimental observations. The experi-
mental results indicate that the shear band orientation is depen-
dent on the confining pressure: a higher confining pressure will
give a smaller inclination angle. Clearly, the coaxial plasticity
model fails to predict this trend; at a higher confining pressure it
gives a greater inclination angle. Both the two-dimensional and
three-dimensional noncoaxial models provide reasonably good
predictions.

As for the shear strain at the initiation of shear band, the pre-
diction produced by the three-dimensional noncoaxial model is
the best, followed by the prediction of the two-dimensional
noncoaxial model. The coaxial plasticity model gives the worst
prediction. While all the models predict the general trend that the
shear strain at the onset of shear band increases with increasing

Fig. 7. Predicted shear strain ��1−�3�max versus confining pressure

Fig. 8. Plastic modulus corresponding to ��1−�3�max versus confining
pressure
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confining pressure, the noncoaxial plasticity models appear to
give a slightly decreasing rate at large confining pressures. Com-
pared to the noncoaxial models, the coaxial model predicts that
the shear band initiates at a much smaller strain level throughout
the range of confining pressures concerned.

The dilatancy in Fig. 11 is defined as ��̇1− �̇2� / ��̇1+ �̇2�, with
negative values for dilation and positive values for contraction. It
is noted that the specimens always show dilatancy at the onset of
shear band and the degree of dilation becomes small when the
confining pressure increases. Again, the three-dimensional nonco-
axial model provides the best prediction, whereas the coaxial
model gives a poor prediction.

Conclusions

Predicting the onset of shear band in geomaterials plays an im-
portant role in various geotechnical analyses involving stability
problems. A traditional constitutive model implicitly assumes co-
axiality between the principal directions of the stress and the rate

Fig. 9. Shear band inclination versus confining pressure

Fig. 10. Shear strain at bifurcation versus confining pressure
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of plastic deformation, which however contrasts with the accumu-
lating experimental evidence of noncoaxiality. In this paper, a
noncoaxial constitutive modeling platform has been established in
the general three-dimensional stress space. It has been shown that
the noncoaxial stress rate proposed by Rundnicki and Rice �1975�
only represents the two-dimensional condition but not the three-
dimensional condition.

A three-dimensional coaxial plasticity model has been revised
within the proposed noncoaxial modeling framework to account
for the effects of noncoaxiality. The performance of the three-
dimensional noncoaxial plasticity model has been evaluated by
comparison of its predictions with experimental observations and
with those produced by the two-dimensional noncoaxial model
and the coaxial plasticity model. The results show that, as
compared to the two-dimensional noncoaxial model, the three-
dimensional noncoaxial model can improve the predictions
for the initiation and orientation of shear band as well as the
dilatancy at the onset of shear band. The predictions produced by
the coaxial plasticity model are generally poor however. The
study also shows that the value of the plastic modulus,Ht, which
governs the noncoaxial stress-strain response, can be identified as
the one that gives a peak response of the deviatoric strain in the
��1−�2�max−Ht�max� plane.

While the theoretical developments presented here are limited
to isotropic plasticity models, the framework may be extended to
plasticity models with combined isotropic/kinematic hardening by
introducing the back stress �̄ij =�ij −�ij, where �ij =relative stress
describing the translation of yield surface. A detailed discussion
of this issue is beyond the scope of the paper and will be reported
on in the future.
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Notation

The following symbols are used in the paper:
A � material constant;

a0 ,a1 ,a2 � coefficients depending on stress invariants and
plastic potential function;

b0 ,b1 ,b2 � coefficients depending on stress invariants and
yield function;

Cijkl
np � noncoaxial plastic tangential compliance tensor;

Dijkl
e � elastic tangential stiffness tensor;

Dijkl
ep � elasto-plastic tangential stiffness tensor;

dsij � deviatoric stress increment;
dsij� � projective component of dsij on yield surface;

E � Young’s modulus;
ėij � deviatoric component of �̇ij;
e0 � initial void ratio;
F � yield function;
f ij � outward normal tensor of yield surface;
G � shear modulus;
Ht � tangential modulus governing noncoaxial

response;
I1 ,J2 ,J3 � stress invariants;

Q � plastic potential function;
Sij � stress tensor independent of �ij and sij;
sij � deviatoric stress;
� � deviation angle between dsij

n and dsij� ;
�ij � Kronecker delta;
�̇ij � rate of strain tensor;
� � stress ratio;

�c � stress ratio at �kk
p =0;

� f � stress ratio at peak/failure;
� � deviation angle between f̄ i j and dsij;

�̇ � nonnegative scalar that varies throughout plastic
loading history;

� � Poisson’s ratio;
�ij � Cauchy stress;

�̇ij��̂ij� � rate of Cauchy �Jaumann� stress;
� � mobilized friction angle;

� f � peak friction angle;

� �˙ � rate of tensor �or vector�;
� �cp � coaxial plastic component of tensor;
� �e � elastic component of tensor;

� �np � noncoaxial plastic component of tensor;
� �p � plastic component of tensor; and
	� �	 � magnitude of tensor.
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