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SUMMARY

Time-domain analysis of dynamic soil–structure interaction based on the substructure method plays an
increasing role in practical applications as compared with the frequency-domain analysis. Efficient and
accurate modelling of the unbounded soil or rock medium has been a key issue in such an analysis.
This paper presents a subregional stepwise damping-solvent extraction formulation for solving large-scale
dynamic soil–structure problems in the time domain. Accuracy and efficiency of the formulation are
evaluated in detail for a classical problem involving a rigid strip foundation embedded in a half-space.
A practical large-scale soil–structure interaction problem, which represents a high concrete gravity dam
subjected to seismic load, is then analysed using the proposed method. Various responses of the dam,
including time histories of the crest displacement and acceleration and contours of the peak principal
stresses within the dam body, are presented. Comparisons are also made between these results with those
obtained using other models for the unbounded medium. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A typical dynamic soil–structure interaction problem involves a structure supported by an
unbounded soil medium and subjected to a time-varying earthquake load. Efficient yet accurate
modelling of the unbounded soil medium has been of long-standing interest in research on
dynamic soil–structure interaction. There are generally two major methods for analysis of the
dynamic system [1]: the direct method and the substructure method. Accumulating experience
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Figure 1. Dynamic soil–structure interaction system.

indicates that while the direct method is a conceptually easier way to model the entire soil–
structure system in a single step, the substructure method is computationally more efficient. In the
substructure method, the soil–structure system is divided into two parts: one part is the general-
ized structure including a portion of adjacent soil with an irregular boundary, which can behave
nonlinearly; the other part is the semi-infinite, unbounded linear soil medium (see Figure 1). The
generalized soil–structure interface separates the two parts.

The substructure method consists of three major steps. First, the seismic free-field input motion
on the soil–structure interface is determined. Second, the reaction of the unbounded soil on the
interface is determined in the form of a displacement–force relationship. Third, the bounded
soil–structure system under the interaction force is analysed.

Analysis of the soil involves the solution of a wave propagation problem with the radiation
condition imposed as a boundary condition at infinity. It is the numerical implementation of the
radiation condition that poses a challenge in such an analysis. There are traditionally two ways
for implementation of the radiation condition: one way is to enforce the condition rigorously at
the soil–structure interface by using the boundary element technique [2, 3], and the other way
is to impose a wave absorbing boundary condition on the outer boundary of a bounded domain
[4–7]. Recently, a novel method for the analysis of the unbounded soil medium, known as the
damping-solvent extraction (DSE) method, was suggested by Wolf and Song [8]. The method,
developed based on the physical notion that waves propagating in a damped medium decay, seeks
to simulate approximately the radiation condition by using artificial material damping to attenuate
both outgoing and reflected waves, and then ‘extracting’ the artificial damping in order to remove
its undesirable effects.

The DSE method has been evaluated in detail in the frequency domain for three classical
problems [8, 9], i.e. the problem of out-of-plane motion of a semi-infinite layer of constant depth,
the problem of in-plane motion of a semi-infinite wedge, and the problem of a strip foundation
with rectangular cross-section embedded in a half-plane. Feasibility of the DSE method in the
time-domain analysis was briefly discussed for the third problem [8] where no real structures were
involved. Time-domain ‘implementation of the method for analysing practical, large-scale dynamic
interaction problems is a challenging task; this is due partly to the fact that the time-domain
formulation usually involves convolution integrals causing the solution to be very complicated
[1, 10].
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The objective of this paper is to present an efficient and accurate subregional stepwise DSE
scheme for the dynamic analysis of large-scale soil–structure interaction problems in the time
domain. This paper is organized as follows. First, the principle of the DSE method is briefly
reviewed and its time-domain implementation is outlined. This is followed by a complete description
of the subregional stepwise DSE formulation in the time domain. Finally, the performance of the
proposed formulation is assessed in detail and a large-scale dynamic soil–structure interaction
problem is analysed.

2. PRINCIPLE OF DAMPING-SOLVENT EXTRACTION METHOD

The DSE method is conceptually simple and involves three major steps. In the first step, a finite
region adjacent to the soil–structure interface is selected and discretized using the finite element
technique (see Figure 2). Artificial material damping that is not present in the actual medium is
added as a solvent to attenuate outgoing and reflected waves. The outer boundary of the finite region
is usually defined as an absorbing boundary to decay the waves further. The second step involves
computation of the dynamic stiffness of the bounded domain at the soil–structure interface. In the
third step, the influence of artificial damping on the dynamic stiffness derived in the second step
is extracted, resulting in the dynamic stiffness for unbounded domain.

In the frequency domain, the dynamic stiffness matrix of the unbounded domain [S∞(�)] can
be derived in relation to the dynamic stiffness of the artificially damped bounded domain [S�(�)]
as [8]

[S∞(�)] = G

G∗

(
[S�(�)] + [S�(�)],� (a0 − a∗

0)

a∗
0,�

)
(1)

where G and G∗ are shear moduli of the natural medium and the artificially damped medium,
respectively; a0 and a∗

0 are dimensionless frequencies for the natural medium and the artificially
damped medium, respectively; a comma represents the derivative with respect to the corresponding
variable. G∗ and a∗

0 are defined as follows: G∗ =G(1 + 2i�) and a∗
0 = �r0/(cs

√
1 + 2i�), where

� is the excitation frequency, r0 is the characteristic length, cs is the shear wave velocity of the
undamped medium, and � is the linear material hysteretic damping.

g f
Bounded  Dampin
Medium
Bounded medium  

Generalized 
soil-structure 
interface

with damping

Figure 2. FE model of finite region of unbounded medium.
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For a time-domain analysis, the interior material hysteretic damping is not considered suitable;
rather, the exterior mass-proportional dashpots, equivalently defined as a damping matrix 2�[M]
and an additional stiffness matrix �2[M], can be chosen for the bounded medium to provide the
artificial damping. The nodal damping coefficient � has the dimension of cs/r0. The dynamic
stiffness matrix of the unbounded domain [S∞(�)] can be formulated in a similar form to that for
the frequency-domain implementation [8]

[S∞(�)] = [S�(�)] + [S�(�)],� (a0 − a∗
0)

a∗
0,�

(2)

with G∗ =G and the dimensionless frequency, a∗
0 defined as

a∗
0 = (� − i�)r0

cs
(3)

Substituting Equation (3) into Equation (2) gives

[S∞(�)] = [S�(�)] + i�[S�(�)],� (4)

Applying the inverse Fourier transformation to Equation (4) yields the impulse displacement
response as

[S∞(t)] = (1 + �t)[S�(t)] (5)

The interaction force of the undamped unbounded medium {R∞(t)} can then be determined by

{R∞(t)}=
∫ t

0
[S∞(t − �)]{u(�)} d� (6)

Substituting Equation (5) into Equation (6) results in

{R∞(t)}= (1 + �t){R�(t)} − �{R�r (t)} (7)

It becomes apparent from Equation (7) that the interaction force consists of two components:
one is the interaction force of the damped bounded medium for the original loading {u(t)} at the
soil–structure interface

{R�(t)} =
∫ t

0
[S�(t − �)]{u(�)} d� (8)

and the other component is the interaction force of the damped bounded medium for the loading
{ur (t)}= t{u(t)} at the soil–structure interface:

{R�r (t)}=
∫ t

0
[S�(t − �)]{ur (�)} d� (9)

3. SUBREGIONAL STEPWISE IMPLEMENTATION IN TIME DOMAIN

3.1. Computation of dynamic interaction force

Direct computation of the interaction force based on Equations (7)–(9) requires significant compu-
tational effort because of the convolution integrals involved. Rather than using the direct procedure,
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Figure 3. FE discretization of bounded medium for time-domain analysis.

the interaction forces {R�(t)} and {R�r (t)} can be calculated using the following discrete equation
of motion for the artificially damped bounded region:

[M]{ü} + [C]{u̇} + [K ]{u} = {R} (10)

where [M] = [M], [C] = 2�[M], [K ] = [K ]+ �2[M] are the mass, damping and stiffness matrices,
respectively, and {R} is the load vector.

Though the convolution integrals can be avoided by using Equation (10), it should be noted,
however, that both Equation (7) and the relationship {ur (t)}= t{u(t)} contain the absolute time
variable t . The inclusion of the time variable t in the formulation may cause numerical difficulties
and inaccuracies in the computation. For example, the structural current response may be affected
by the selection of the starting point of the absolute time variable t and numerical errors may
be magnified with increasing time steps. To deal with this problem, effort is made to develop an
explicit formulation that eliminates the absolute time variable.

In doing that, Equation (10) is rewritten in the form of partition matrices by introducing
Equation (8)

{
0

R�b

}
=
⎡
⎣Mmm 0

0 Mbb

⎤
⎦
{
üm

üb

}
+
⎡
⎣Cmm 0

0 Cbb

⎤
⎦
{
u̇m

u̇b

}
+
⎡
⎣Kmm Kmb

Kbm Kbb

⎤
⎦
{
um

ub

}
(11)

where the subscripts b and m denote the nodes on the generalized soil–structure interface and the
nodes inside the bounded medium, respectively.

The above equation can be further rewritten as two sub-equations:

−[Kmb]{ub} = [Mmm]{üm} + [Cmm]{u̇m} + [Kmm]{um} (12)

{R�b} = [Mbb]{üb} + [Cbb]{u̇b} + [Kbb]{ub} + [Kbm]{um} (13)
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Figure 4. Computed time history of interaction force: (a) effect of artificial
damping and (b) effect of damping extraction.

Similarly, introducing Equation (9) into Equation (10) leads to{
0

Rr�b

}
=
[
Kmm Kmb

Kbm Kbb

]{
urm
urb

}
+
[
Cmm 0

0 Cbb

]{
u̇m
u̇rb

}
+
[
Mmm 0

0 Mbb

]{
ürm
ürb

}
(14)

where {urb} = t{ub}.
The first- and second-order derivatives of {urb} with respect to time can be readily given by

{u̇rb} = t{u̇b} + {ub} (15)

{ürb} = 2{u̇b} + t{üb} (16)

To eliminate the variable t in the formulation, an assumption is made herein for the nodal
displacements inside the bounded medium, {urm}, such that

{urm} = t{um} − {vm} (17)
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Figure 5. A finite region of unbounded medium used in Example 3.

Accordingly, the time derivatives of {urm} can be given as

{u̇rm} = t{u̇m} + {um} − {v̇m} (18)

{ürm} = 2{u̇m} + t{üm} − {v̈m} (19)

Substituting Equations (15)–(19) into Equation (14) leads to

[Mmm]{v̈m} + [Cmm]{v̇m} + [Kmm]{vm} = 2[Mmm]{u̇m} + [Cmm]{um} (20)

{Rr�b} = t{R�b} + 2[Mbb]{u̇b} + [Cbb]{ub}−[Kbm]{vm} (21)

Finally, the interaction force in the time domain can be determined as

{R∞(t)} = [Mbb]{üb} + ([Cbb] − 2�[Mbb]){u̇b}
+ ([Kbb] − �[Cbb]){ub} + [Kbm]{um} + �[Kbm]{vm} (22)

Note that Equation (22) eliminates the absolute time variable t and the interaction force {R∞(t)}
can be conveniently computed by employing a step-by-step integration algorithm. Also, note that
{um} and {vm} can be computed based on Equations (12) and (20) while {ub} can be solved by
combining Equation (22) with the equation of motion of the generalized structure.

3.2. Computation of dynamic response of structure

Now, consider the generalized structure that may include an adjacent, irregular soil region and
may behave nonlinearly. The discrete equation of motion of the system can be expressed as[ [Mss] [Msb]

[Mbs] [Mbb]

]{{üals (t)}
{üalb (t)}

}
+
{ {Ps(t)}

{Pb(t)}

}
=
{ {0}

{−Rb(t)}

}
(23)

where the superscript al denotes the total motion, {P(t)} is the vector of the nonlinear internal
forces of the system at time t , {Rb(t)} is the vector of the interaction forces and is a function of

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2008; 32:415–436
DOI: 10.1002/nag



422 J. B. LI, J. YANG AND G. LIN

0 20 40 60 80 100 120 140 160 180 200
0.2

0.4

0.6

0.8

1

1.2

Harmonic Waves Periods
T=0.1
T=0.2
T=0.4
T=0.8
Analytical results

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1
Harmonic Waves Periods

T=0.1
T=0.2
T=0.4
T=0.8
Analytical results

(a)

(b)

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

D
ec

ay
 r

at
e

D
ec

ay
 r

at
e

D
ec

ay
 r

at
e

Propagation distance (m)

Propagation distance (m)

Propagation distance (m)(c)

Harmonic Waves Periods
T=0.1
T=0.2
T=0.4
T=0.8
Analytical results

Figure 6. Amplitude decay of outgoing waves: (a) d = 0.25; (b) d = 0.5; and (c) d = 1.0.

the motion relative to the ground, i.e.

{Rb(t)}=
∫

[S∞
bb(t − �)]({ualb (�)} − {ugb(�)}) d� (24)
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Table I. Propagation distance for a decay rate of 50%.

Propagation distance normalized with wavelength

Artificial damping Propagation
factor, d distance, L50, (m) T = 0.1 s T = 0.2 s T = 0.4 s T = 0.8 s

0.25 ∼120 1.2 0.6 0.3 0.15
0.5 ∼80 0.8 0.4 0.2 0.1
1.0 ∼40 0.4 0.2 0.1 0.05

Equation (23) can be reformulated by introducing Equation (24) as

[ [Mss] [Msb]
[Mbs] [Mbb]

]{
üals (t)

üalb (t)

}
+
{
Ps(t)

Pb(t)

}
+

⎧⎪⎨
⎪⎩

0∫ t

0
[S∞

bb(t − �)]{ualb (�)} d�

⎫⎪⎬
⎪⎭

=

⎧⎪⎨
⎪⎩

0∫ t

0
[S∞

bb(t − �)]{ugb(�)} d�

⎫⎪⎬
⎪⎭ (25)

The above equation describes a general procedure that can be used to compute various wave
patterns consisting of inclined body waves and surface waves. In the case where the excavation
is not involved (refer to Figure 1), the scattered motion {ugb(t)} can be replaced by the free-field
ground motion {ufb(t)}.

By introducing Equation (22) into Equation (23) or (25), the following equation of motion for
the generalized structure system is obtained:[[Ms

ss] 0

0 [M∗
bb]

]{
üals

üalb

}
+
[ [Cs

ss] [Cs
sb]

[Cs
bs] [C∗

bb]

]{
u̇alb

u̇alb

}
+
[
K s
ss K s

sb

K s
bs K ∗

bb

]{
uals

ualb

}
=
{

0

[Mbb]{ügb}

}

+
{

0

[Cbb]−2�[Mbb]{u̇gb}

}
+
{

0

([Kbb]−�[Cbb]){ugb}

}
+
{

0

[Kbm]{um}+�[Kbm]{vm}

}
(26)

where

[M∗
bb] = [Ms

bb] + [Mbb] (27)

[C∗
bb] = [Cs

bb] + ([Cbb] − 2�[Mbb]) (28)

[K ∗
bb] = [K s

bb] + ([Kbb] − �[Cbb]) (29)

As explained earlier, under the loading {ub} = {ualb } − {ugb} at the interface, {um} and {vm} can
be determined from Equations (12) and (20) using some integration scheme. In this study, the
so-called predictor–corrector integration algorithm [11, 12] is adopted. This algorithm avoids the
computation of the inverse of stiffness matrix and hence is particularly suitable for large-scale
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Figure 7. Kinetic energy decay of outgoing waves: (a) d = 0.25; (b) d = 0.5; and (c) d = 1.0.

dynamic problems. Numerical experiments have shown that convergence of the algorithm can be
guaranteed under the condition of small time intervals. Thus, the response of the dynamic system
can be solved step by step from Equation (26) for the prescribed seismic excitations {ugb}, {u̇gb}
and {ügb}.
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Figure 8. Potential energy decay of outgoing waves: (a) d = 0.25; (b) d = 0.5; and (c) d = 1.0.

It should be mentioned that in some cases only the earthquake ground acceleration {ügb} is
available for the analysis while the displacement and velocity excitations have to be obtained
by integrating the acceleration. The direct integration of acceleration may cause unrealistic drifts
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in displacement and velocity [13–15]. Use of the drifted displacement and velocity as input
motions may have a significant effect on the soil–structure interaction analysis. A simple approach
suggested by Yang et al. [16], which involves the least-square curve fitting technique, can be used
to directly process the acceleration time series to derive reasonable displacement and velocity
excitations.

4. NUMERICAL EXAMPLES

A subregional stepwise DSE scheme for time-domain analysis of dynamic soil–structure interaction
problems has been described. In this section, accuracy and efficiency of the proposed scheme are
evaluated using several examples.
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Figure 10. A concrete gravity dam supported by unbounded medium.

4.1. Example 1

The problem used in this example is the third one of the three classical problems investigated by
Wolf and Song [8]: a strip foundation with rectangular cross-section embedded in a homogeneous
half-plane. The purpose of this example is to verify the feasibility and accuracy of the proposed
formulation in computation of the interaction force {R∞(t)}.

Referring to Figure 3, the length of the bounded region l is taken to be equal to the characteristic
length b, 20m. The properties of the unbounded medium are assumed as follows: shear modulus
G = 20MPa, Poisson’s ratio �= 0.25, and mass density � = 2000 kg/m3. Viscous dashpots with
the coefficients per unit length �cp (cp is the compressional wave velocity) in the perpendicular
direction and �cs in the tangential direction on the outer boundary are used as a transmitting
boundary.

The transient excitation consists of a harmonic displacement at the centre of the rigid base and
in the horizontal direction

ugb(t) =

⎧⎪⎨
⎪⎩

u0
2

(
1 − cos

(
2�t

T

))
, t�2T = 0.8 s

0, t>2T = 0.8 s

(30)

where the amplitude u0 is assumed to be 0.2m and the period of excitation is taken as
T = 8b/cs = 0.4 s.
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Table II. Material properties of concrete dam and unbounded medium.

Young’s modulus, E (GPa) Poisson’s ratio, � Density, � (kg/m3)

Concrete dam 20 0.18 2600
Unbounded medium 2.4 0.33 2100

The computed time history of the interaction force is shown in Figure 4(a) for three cases
of artificial damping. Here, the dimensionless artificial damping factor, defined as d = �b/cs [8],
is employed. For comparison, the results obtained by only using viscous dashpots on the outer
boundary, i.e. without introducing any artificial damping, are also presented. The results, obtained
using a sufficiently large region such that the reflected waves do not reach the soil–structure
interface in the time of interest, are included as the ‘exact’ solution.

It is clear from Figure 4(a) that the proposed formulation is feasible and can yield more accurate
results than the method only using the viscous boundary. One may note that a satisfactory accuracy
can be achieved for the artificial damping factor d of about 1.0–2.0; this is in agreement with the
result by Wolf and Song [8].

The importance of extracting the artificial damping in the computation of interaction force is
illustrated in Figure 4(b), where the curve denoted as ‘bounded damped medium’ is obtained by
introducing the artificial damping but without extraction. The graph also implies that the analysis
by simply using a large damping for the bounded medium cannot lead to a satisfactory solution.

4.2. Example 2

The effect of artificial damping is to attenuate the waves propagating from the soil–structure
interface towards the outer boundary and the reflected waves at the boundary. To have a better
view of this damping effect, this example investigates the decay with distance of the outgoing
wave in terms of its amplitude and energy. The problem analysed is the same with that used in
Example 1 but with a larger bounded region (Figure 5): L = 1100m and b= 50m. The properties
of the bounded medium are as follows: G = 5GPa, �= 0.25, and � = 2000 kg/m3.

The transient displacement excitation as prescribed by Equation (30) is assumed to act on the
soil–structure interface. The duration of the excitation is taken as 1.1 s such that no significant
reflected waves are generated on the outer boundary.

The decay of wave amplitude at the ground surface is plotted in Figure 6 against the propagation
distance starting from the soil–structure interface (reference location A). Three different values
of artificial damping are assumed, i.e. d = 0.25, 0.5, and 1.0; the corresponding values of � are
5.0, 10.0, and 20.0, respectively. For each value of d , four different periods of excitation, i.e.
T = 0.1, 0.2, 0.4, and 0.8 s, are investigated.

Figure 6 indicates that the artificial damping can effectively reduce the amplitude of outgoing
waves. For d = 0.25, the propagation distance required to have a decay rate of 50%, denoted as
L50, is about 120m for all the four cases of excitation period. The distance L50 will decrease
significantly when a larger damping is used. For example, for d = 1.0, L50 is approximately 40m
for all the periods considered.

Table I summarizes the propagation distance for a decay rate of 50%, L50, in terms of the
wavelength of the propagating wave for all the cases considered. It can be seen that for d = 0.5
and T = 0.1 s, the amplitude of the propagating wave is reduced by 50% at a propagation distance
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Figure 11. Harmonic excitation used in Example 3: (a) displacement and (b) acceleration.

of 0.8 times the wavelength; while for the same damping factor but a longer period, T = 0.8 s, the
amplitude is reduced by 50% at a distance of 0.1 times the wavelength.

Since the prescribed excitation is harmonic, it is possible to analytically evaluate the decay of
propagating waves. Assuming a shear wave propagating from the interface to the outer boundary,
x = L , the phase angle is equal to e−i�L/cs if no artificial damping is introduced. Adding the artificial
damping will lead to the phase angle being equal to e−i�L/cse−dL/b. Clearly, the additional decay
due to the artificial damping is e−dL/b. For comparison, the analytical solutions are also included
in Figure 6, showing a reasonable agreement with the numerical results.

Another fundamental way to evaluate the effect of artificial damping is to investigate the
attenuation of energy during wave propagation. For a specific plane a–a′ in Figure 5, the kinetic
and potential energy due to wave propagation can be approximately calculated as

Ek = 1

2

∫ a′

a
� · (u̇2x + u̇2y) dy (31)

Ep = 1

2

∫ a′

a
(�xx 	xx + �yy	yy + �xy
xy) dy (32)
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Figure 12. Time history of crest displacement: (a) T = 0.2 s; (b) T = 0.6 s; and (c) T = 0.8 s.

where Ek and Ep denote the kinetic and potential energy, respectively; u̇xand u̇ y are velocities in
horizontal and vertical directions, respectively; �xx , �yy , and �xy are three stress components; 	xx ,
	yy , and 
xy are strain components.
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Figure 13. Time history of crest acceleration: (a) T = 0.2 s; (b) T = 0.6 s; and (c) T = 0.8 s.

Using the kinetic and potential energy on the plane A–A′ as a reference, Figures 7 and 8 present
the decay of the kinetic and potential energy as a function of the propagation distance. In Figure 9
the decay rates for the kinetic and potential energy obtained at d = 0.5 and T = 0.4 s are compared
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Figure 14. Variation of (a) peak displacement and (b) peak acceleration along dam height (T = 0.6 s).
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Figure 15. Seismic input acceleration used in Example 3.

with those derived without introducing any artificial damping. These figures clearly illustrate the
effect of artificial damping.

4.3. Example 3

The physical model discussed in the first two examples represents an idealized soil–structure
interaction problem in which no real structures are involved. In this example, a large-scale soil–
structure interaction problem is solved in the time domain, with the purpose of evaluating the
feasibility of the proposed scheme in practical applications.

Figure 10 shows a concrete gravity dam supported by unbounded medium. The dam has a height
of 112m, a crest width of 12m and a base width of 80m. The material properties of the dam and
unbounded medium are given in Table II. In the analysis, a finite bounded region of 40× 160m
is selected. The artificial damping factor for the bounded medium is taken to be 1.0. The outer
boundary of the finite region is defined as an absorbing boundary.
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Figure 17. Time history of relative displacement at dam crest.

First, consider the harmonic input motions shown in Figure 11 in the dimensionless form,
where the amplitude of displacement excitation, u0, is assumed as 0.2m. Three different excitation
periods, i.e. T = 0.2, 0.6, and 0.8 s, are investigated.

Figure 12 presents the computed displacement response at dam crest for the three cases of
excitation period, and Figure 13 shows the corresponding acceleration response at dam crest.
Note that both the crest displacement and crest acceleration are normalized by the amplitudes
of input motions, and thus the response can be regarded as the amplification factor. To view
the effectiveness of the time-domain DSE method, the results obtained using the same amount
of artificial damping but without extraction (denoted as bounded damped region) and the results
obtained by assuming a rigid base (i.e. ignoring soil–structure interaction) are also included in
Figures 12 and 13. The comparisons indicate that appropriate modelling of the unbounded medium
is critical to the response of the dam.

Figure 14 shows the amplitude distribution of the displacement and acceleration along the
height of the dam. One may note that, compared with the DSE method, the other two methods of
modelling the unbounded medium give higher estimates of both the displacement and acceleration.
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Figure 18. Contours of peak principal stresses within dam: (a) tensile and (b) compressive stresses
computed using rigid-base model; (c) tensile and (d) compressive stresses computed using DSE method.

Now, consider a random seismic excitation shown in Figure 15. The response of the crest
acceleration to this excitation, computed using the time-domain DSE scheme, is shown in Figure 16
along with the response computed using the rigid-base model. Figure 17 compares the time histories
of the relative displacements at dam crest obtained for the two models of the unbounded medium.
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It is seen that the rigid-base model yields an unreasonably great acceleration response but a much
smaller estimate of the relative displacement.

Figure 18 illustrates the contours of the principal compressive and tensile stresses within the
concrete dam. Compared with the DSE method, the rigid-base model is found to overestimate both
the principal compressive and tensile stresses in the dam. The maximum compressive and tensile
stresses in the dam calculated using the rigid-base model are 3.65 and 3.87MPa, respectively, and
they reduce to 2.62 and 2.84MPa, respectively, when the DSE method is used. Moreover, it is
noted that the DSE method predicts a stress concentration occurring at the toe and heel of the dam
but this feature does not appear in the predictions using the rigid-base model.

5. CONCLUSIONS

This paper presents a subregional stepwise damping solvent extraction formulation for time-domain
analysis of soil–structure interaction problems. The formulation avoids the use of convolution
integrals and eliminates the time variable in the computation of the interface force. This renders it
suitable for the analysis of large-scale dynamic problems. A detailed evaluation of the performance
of the formulation has been carried out for a strip foundation embedded in a half-space and subjected
to a harmonic excitation. The analysis shows that the formulation is effective and the degree of
accuracy depends on the value of the dimensionless damping factor d (associated with the artificial
nodal damping coefficient �). Generally, d = 1.0 gives a highly accurate solution.

The proposed method has been applied to a large-scale dynamic soil–structure interaction
problem that represents a high concrete gravity dam subjected to seismic load. The comparison
of the various responses of the dam with those obtained using other models for the unbounded
medium indicates that the method is feasible and efficient for solving practical dynamic interaction
problems.
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