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A B S T R A C T

A two-and-a-half-dimensional finite element method (2.5D FEM) is applied to investigate the dynamic response
of an unsaturated ground subjected to moving loads caused by high-speed train. The partial differential equa-
tions of unsaturated porous medium in frequency domain are deduced based on the equations of motion and
mass conservation of three phases, with consideration of the compressibility of solid grain and pore fluid.
Governing equations of unsaturated soil in 2.5D FE form are derived by using the Fourier Transform with respect
to the load moving direction. The track structure is simplified as an Euler beam resting on the unsaturated porous
half-space and the viscous-elastic artificial boundaries are used to avoid the energy reflection from the boundary.
Numerical simulations demonstrate effects of the degree of water saturation and train speed to the ground
vibration and the excess pore water pressure. It is concluded that the degree of water saturation has a different
influence on the ground displacement and acceleration. The gas phase has varied influence to the ground dis-
placement amplitude at different train speed level at the track center. A very small amount of gas in the saturated
ground largely increases the ground acceleration amplitude at a given train speed. Ground displacements at-
tenuate rapidly with almost the same rate for both high and low train speeds near the track center. The max-
imum amplitude of excess pore water pressure is located at 1.5–2.0 m beneath the ground surface and decreases
significantly as the degree of water saturation decreases.

1. Introduction

In recent years, the high-speed-railway has been developed as a
quick and convenient means of mass transportation in China.
Evaluating the train-caused ground vibration and its impact on the
adjacent environment is hence an important design consideration.

Investigations concerning the ground vibration induced by moving
loads dated back to 1950s, which have been partly reviewed by Beskou
and Theodorakopoulos [1]. Many investigations were conducted by
analytical means assuming a homogeneous elastic half-space [2,3] or by
using semi-analytical models for a multi-layered ground [4]. The FEM,
the BEM or the FEM/BEM hybrid schemes [5–8] were also widely used
considering their advantages at dealing with the irregularities of the
geometry and material. By assuming the material and geometric
properties to be constant along the load-moving direction, only the
profile normal to the load-moving direction needs be considered, which
is two-dimensional in nature. However, if the effect of the moving loads
is to be considered, then the problem is somewhat between two- and

three-dimensional (2.5D) [9,10]. Such an idea was firstly proposed by
Hwang and Lysmer [11] in studying the response of an underground
structure to traveling seismic waves, and was also used by Barros and
Luco [12] to obtain the steady-state displacements and stresses within a
multi-layered viscoelastic half-space generated by a buried or surface
point load moving with constant speed. Yang and Hung [9,10] used the
2.5D FEM to study the 3D ground dynamic response under train loads,
considering the discrete sleeper supports of the train tracks. The same
concept was also adopted by Takemiya [13] and Bian et al. [14,15] in
the study of the environmental vibration caused by the train loads.
These studies simplified the subgrade soil as single-phase elastic or
visco-elastic soil.

Biot [16,17] proposed the elasto-dynamic theory for saturated
porous media, making it possible to study the dynamic response of
saturated ground under moving loads [18,19]. Siddharthan et al. [20]
and Theodorakopoulos et al. [21,22] have studied the response of a
poro-elastic half-space subjected to moving loads analytically and nu-
merically. Lu and Jeng [23] presented an analytical solution for the
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dynamic response of a half-space porous medium subjected to a moving
point load using the Holmholtz decomposition and Fourier Transfor-
mation method. Using Fourier Transform, Lefeuve-Mesgouez and
Mesgouez [24] presented a 3D semi-analytical approach to study the
displacements of a poro-visco-elastic multi-layered half-space induced
by harmonic surface loads moving at a constant speed. Considering the
track system, Cai et al. [25,26] investigated the dynamic responses of a
saturated half-space under different train moving load patterns. Yang
et al. [27] semi-analytically studied the vibration of a water-saturated
poro-elastic ground induced by high speed train, considering the dis-
crete sleeper effect, damping property and the intrinsic permeability of
the soil. Gao et al. [28–30] investigated the dynamic responses of sa-
turated soils (including homogeneous, transversely isotropic and
layered) under moving loads using the 2.5D FEM.

The ground model is of greatly important for the accuracy of the
numerical simulation of the track-ground response under moving loads.
Most previous studies treated ground as a single-phase or water-satu-
rated poro-elastic medium. In arid and semi-arid areas, however, the
subsoil is often in an unsaturated state due to large amounts of eva-
poration and transpiration [31]. Jafarzadeh and Sadeghi [32], Var-
doulakis and Beskos [33] and Yang and Sato [34] all pointed out that
the degree of saturation has a significant influence on dynamic char-
acteristics of the ground. In contrast to the scenario of saturated soil,
even a small decrease of the degree of water saturation can greatly
influence the displacement of the soil skeleton and the excess pore
water pressure [32,33,35,36]. Treating the soil as a single-phase or
saturated medium is not adequate in seeking more accurate estimation
of ground vibration caused by high-speed trains.

Considering the irregularities of the geometry and material of the
ground and track systems, the FEM is perhaps the best method with
respect to efficiency, versatility and availability without compromising
accuracy [1]. Particularly, the 2.5D FEM mentioned above is especially
useful when the applied load and structural response are 3D while the
structure itself is 2D [9,11,12,29]. The finite element discretization is
required only in a section perpendicular to the track direction in 2.5D
FEM formulation, which is simpler than the full 3D FEM formulation.
Solving the 3D problem using a 2D plane model can significantly reduce
the computation cost without losing accuracy at the same time, and the
results can be quickly derived in a single computation. While the 2.5D
FEM formulations have been developed for dynamic problems invol-
ving single-phase elastic [9,10,12–15] or two-phase saturated media
[28–30], to the authors’ best knowledge, they are not yet available for
the unsaturated ground model.

In this study, a 2.5D FEM formulation for studying the vibration of
an unsaturated ground caused by moving high-speed train loads is
presented. The partial differential equations of unsaturated porous
medium in frequency domain are deduced based on the equations of
motion and mass conservation of three phase, with consideration of the
compressibility of solid grain and pore fluid. By using the Galerkin
method and applying the Fourier Transform with respect to the load-
moving direction, the 2.5D FEM formulation of the governing equations
of unsaturated medium in frequency-wave number domain are then
derived. The track structure (including the track and the embankment)
is simplified as an Euler beam resting on the unsaturated ground, which
is discretized by 2.5D quadrilateral elements. The viscous-elastic arti-
ficial boundaries are used to avoid the energy reflection from the
boundary. The solution in the frequency-wave number domain is
transformed to the time-space domain through the Fast Fourier
Transform (FFT). Numerical calculations are presented to show effects
of the degrees of water saturation and train speeds on the ground vi-
bration induced by the moving train loads.

2. 2.5D FEM formulations for unsaturated ground-track model

2.1. Governing equation of unsaturated poro-elastic medium in frequency
domain

The following assumptions are made to the continuous three-phase
porous medium: (1) the mechanical and permeability properties are
uniform; (2) the movement of the water and gas obey the generalized
Darcy's law; (3) the soil particle density is related to the fluid pressure
and volume deformation, and the water and gas densities are functions
of their own pore pressures, respectively. The double Fourier Transform
with respect to t and x is defined as

∫ ∫= −∞
+∞

−∞
+∞ −u ξ y z ω u x y z t e e dxdt¯ ( , , , ) ( , , , )x

iξ x iωtx , where ω and ξx are
the frequency variable and the wave number variable corresponding to
time t and space variable x.

The mass conservation of solid particle can be expressed as [31]:

− − + − =n
ρ
ρ

n n u(1 )
˙

˙ (1 ) ˙ 0s

s
i i,

(1)

where ρs is the soil particle density; n is the soil porosity; u is the dis-
placement of soil particle; "·" represents the first derivative with time.

The influence of water pressure and volume deformation to the
density of soil particle can be expressed as [31]:

− = − − −n
ρ
ρ

α n
K

p α u(1 )
˙

˙ (1 ) ˙s

s g
c i i,

(2)

where α=1-Ksk/Kg is Biot coefficient, Ksk is the bulk modulus of soil
skeleton, Kg is the bulk modulus of soil particle; ui,i is volume de-
formation of soil; pc is the equivalent pore pressure of unsaturated soil
and it is assumed that pc= Srpw + (1-Sr)pa, where Sr is the degree of
water saturation, pw and pa are the pore water pressure and pore gas
pressure, respectively [31]. Substituting Eq. (2) into Eq. (1) yields:

= − + −n α n
K

p α n u˙ ˙ ( ) ˙
g

c i i,
(3)

The mass conservation of pore water can be expressed as [31]:

∂
∂

+ =
t

ρ nS ρ nS u( ) 0w r w r i i
w
, (4)

where ρw is the water density; uw is the water displacement. The re-
lationship between water density and water pressure can be expressed
as [31]:

=
ρ

ρ
p

K
d dw

w

w

w (5)

where Kw is the bulk modulus of pore water. By substituting Eqs. (3)
and (5) into Eq. (4), one can get:

⎡
⎣
⎢

− + − ⎤
⎦
⎥ + + + =S α n

K
p α n u nS

K
p nS nS u˙ ( ) ˙ ˙ ˙ ˙ 0r

g
c i i

r

w

w
r r

w
i i, ,

(6)

The soil-water characteristic curve (SWCC) [31] is used to describe
the relationship between the degree of water saturation and matric
suction:

= = −S S s S p p( ) ( )r r r
a w (7)

where s= pa-pw is matric suction.
Under the assumption of small deformation, the continuous equa-

tion of pore water can be obtained by substituting Eq. (7) into Eq. (6):

+ + + =A p A p A u A u˙ ˙ ˙ ˙ 0w a
i i

w
i i11 12 13 , 14 , (8)

where the four coefficients A11, A12, A13, A14 are listed in Appendix A.
The mass conservation of pore gas can be expressed as [31]:

∂ −
∂

+ − =
n S ρ

t
n S ρ u

( (1 ) )
(1 ) ˙ 0r a

r a i i
a
, (9)

where ρa is the gas density; ua the displacement of the pore gas. The
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relation between gas compression deformation and gas pressure can be
expressed as [31]:

=
ρ

ρ
p

K
d da

a

a

a (10)

where Ka is the bulk modulus of pore gas.
Substituted Eqs. (3) and (10) into Eq. (9) results:

− ⎡
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(11)

Under the small deformation assumption, the continuous equation
of pore gas can be obtained by substituting Eq. (7) into Eq. (11):

+ + + =A p A p A u A u˙ ˙ ˙ ˙ 0w a
i i

a
i i21 22 23 , 24 , (12)

where the four coefficients A21, A22, A23, A24 are listed in Appendix A.
According to the generalized Darcy's law, the seepage equations of

pore water and pore gas are [31]:

− = − +nS u u k
ρ g

p ρ u( ˙ ˙ ) ( ¨ )r i
w

i
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w i
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where "··" denotes the second order derivative with time; kw and ka are
the permeability coefficients of pore water and pore gas. By applying
the Fourier Transform to Eqs. (13) and (14) with respect to time t, the
average displacements of pore water and gas in frequency domain can
be obtained:

=
−

−
u

F u p
F ρ ω
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where "∼" represents the solution in frequency domain; Fa= n(1-
Sr)ρagωi/ka, and Fw= nSrρwgωi/kw. Applying the Fourier Transform
with respect to t in Eqs. (8) and (12), and with Eqs. (15) and (16), the
continuous equations of pore water and pore gas in frequency domain
are obtained as follows:

⎜ ⎟+ + ⎛
⎝

+
−

⎞
⎠

−
−

=A p A p A A F
F ρ ω

u A
F ρ ω

p˜ ˜ ˜ ˜ 0w a w

w w
i i

w w
ii
w

11 12 13
14

2 ,
14

2 ,
(17)

⎜ ⎟+ + ⎛
⎝

+
−

⎞
⎠

−
−

=A p A p A A F
F ρ ω

u A
F ρ ω

p˜ ˜ ˜ ˜ 0w a a

a a
i i

a a
ii
a

21 22 23
24

2 ,
24

2 ,
(18)

In frequency domain, the dynamic equilibrium differential equation
of unsaturated soil neglecting the body force can be expressed as Eq.
(19). Under the assumption of small deformation and the Bishop ef-
fective stress principle, the stress-strain relation of unsaturated soil and
the geometry equation of soil skeleton can be respectively expressed as
Eqs. (20) and (21) [31]:

= − + + −σ n ρ ω u nS ρ ω u n S ρ ω u˜ (1 ) ˜ ˜ (1 ) ˜ij j s i r w i
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2 2 2 (19)
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= +ε u u˜ 1
2

( ˜ ˜ )ij i j j i, , (21)

With Eqs. (15), (16), (19)–(21) the dynamic equilibrium differential
equation of unsaturated soil in frequency domain can be expressed by
soil particle displacement, pore water and pore gas pressure as follow:
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where σ̃ij j, , ε̃ij are the total stress and strain tensor of the unsaturated soil
in frequency domain; δij is Kronecker symbol; λ and μ are the Lame
constants of the soil. The complex form of Lame constants, λc and μc are
used to replace the λ and μ in Eq (20) to reflect damping effects of the
soil:

λc=(1+2iηs) λ, μc=(1+2iηs)μ (23)

where ηs is the damping coefficient of the unsaturated soil.
Eqs. (17), (18) and (22) is the governing partial differential equa-

tions of unsaturated soil in frequency domain, which will be solved in
the following section.

2.2. 2.5D FE solution of unsaturated poro-elastic medium

For drainage boundary, the boundary conditions of Eqs. (17), (18)
and (22) can be summarized as follows:

(1) Boundary conditions at stress boundary Sσ:

=σ n T˜ ˜ij j i (24)

(2) Boundary conditions at flux boundary Sp:

′ = − =p n
ρ g
k

f w aṽ , ( , )f
j j

f

f
f,

(25)

where T̃i, ′p f are the stress and pore pressure at the boundary in fre-
quency domain; nj is the exterior normal direction vector; vf is the
velocity of the fluid at the boundary; ρf and kf are the fluid density and
permeability coefficient, where f=w, a represent pore water and pore
gas, respectively; g is the gravity acceleration.

Using Galerkin method to Eqs. (22) and (24) and to Eqs. (17), (18)
and (25), and by introducing the variation of virtual displacement ∗δũi
and virtual pressure δp̃ f in frequency domain as the weighted function,
we can obtain the equivalent integral form of the governing equation of
unsaturated soil as follows:
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By using parts integration property and Gauss formula, the
equivalent integral weak form of Eq. (26) can be obtained as follows:
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(27c)

By applying the Fourier Transform with respect to x (train moving
direction), Eq. (27) in frequency-space domain can be transformed into
frequency-wavenumber domain. Meanwhile the 4-node isoparametric
element is used for discretization and the interpolation modes in fre-
quency-wave number domain are adopted as follows:

=u uN˜ ˜e (28a)

=p pN˜ ¯ ˜f fe (28b)

=T TN˜ ˜ e (28c)

where "¯" represents the variables in frequency-wave number domain,
ũe and p̃ fe are nodal displacement and nodal pore pressure;

= N N N NN [I , I , I , I ]3 1 3 2 3 3 3 4 and = N N N NΝ̄ [ , , , ]1 2 3 4 are shape function
matrices of soil skeleton and pore pressure, where I3 is the identity
matrix and the shape function in N and Ν̄ is taken as follow:

= + +N η ξ η η ξ ξ( , ) 1
4

(1 )(1 )i i i (29)

where η, ξ are local coordinates of element and ηi, ξi are node coeffi-
cients of element.

Using the conventional FEM, the corresponding matrix form of Eq.
(27) in frequency-wavenumber domain (the so-called 2.5D FEM) can be
obtained as follows:

′ − + ′ − + ′ − =K M u Q Q p G G p f( ) ˜ ( ) ˜ ( ) ˜ ˜
up up up up

w
up up

a
up
s

(30a)

+ + ′ + ′ =H u Q Q p G p f˜ ( ) ˜ ˜ ˜md md md
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md
a
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w

(30b)

+ ′ + + ′ =H u Q p G G p f˜ ˜ ( ) ˜ ˜dw dw
w

dw dw
a

up
a

(30c)

where K'up and Mup are stiffness matrix and mass matrix; Q’ and Q are
liquid contribution matrices; G’ and G are gas contribution matrices;
f̃ up

s and f̃ up
f
(f=w, a) are equivalent nodal force matrix and flux matrix

in frequency-wave number domain; others are provided in Appendix B.
From Eq. (30), the final 2.5D dynamic equations of unsaturated soil in
matrix form can be expressed as follow:

=KU R (31)

where K is the total assembled stiffness matrix, =U u p p[ ˜ ˜ ˜ ]Tw a is the
total assembled unknown variable matrix, and R is the total assembled
equivalent nodal force matrix. The detailed elements of K and R are
provided in Appendix B.

2.3. Track model and train loads in frequency-wave number domain

In this paper, the track structure was simplified as an Euler beam
with a width of 3.0m resting on the unsaturated ground surface sub-
jected to train's moving wheel axle loads. The dynamic equation of the
track system in frequency-wave number domain can be expressed as

[14]:

− = +EIξ mω u f ξ ω p ξ ω( ) ˜ ˜ ( , ) ˜ ( , )x r IT x 0 x
4 4 (32)

where ũr is the track displacement; EI is the bending stiffness of the
track system; m is the comprehensive quality of the track and sleepers;
f ξ ω˜ ( , )IT x is the contact reaction force of the ground and p ξ ω˜ ( , )0 x is the
dynamic train load acting on the track.

The moving train is assumed to contain a sequence of N cars, each
with four pairs of wheels. The train load acting on the track moving
along the x direction with a velocity of Vc can be expressed in the
frequency-wave number domain as follows [14]:

⎜ ⎟= ⎛
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− ⎞
⎠
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where = ∑ + − + − +

+ − + − ∑
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( ) [ (1 ( ) ( ( ( ) )

( (2 ) )] ( )
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N
n n x n n n x

n n x k
N

k x

1
1

1 2

0
1

, Pn1

and Pn2 are the axle loads for the front and rear bogies; L0 is the distance
to a reference position ahead of the first axle load position and Li is the
ith car length; anan, bn are the distances between axles. The geometric
profile of train wheel loads is shown in Fig. 1.

3. Validation of the proposed model and computational
parameters

Eqs. (31) and (32) are the governing equations of the coupled track-
ground system, and the sketch map of the 2.5D finite element model of
track-ground system is shown in Fig. 2. Rigid connection was used
between Euler beam and the ground model and the deformation of the
contact point between track and ground is consistent to guarantee the
displacement compatibility.

When modeling the space truncated from the infinite domain in
numerical simulations, it is necessary to deal with the boundary of the
finite domain in order to avoid the energy reflection of outgoing waves
from the boundary. A large amount of methods has been used to model
the effect of the outgoing wave radiation towards infinity, such as dy-
namic Infinite Element [37–39], Boundary Element [40] and trans-
mitting boundaries as reviewed by Tsynkov [41]. The visco-elastic

Fig. 1. Geometric profile of train wheel loads.

Fig. 2. 2.5D FEM of the track-ground model and the viso-elastic boundary.
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boundary can simulate not only the radiation damping of the infinite
media but also the elasticity recovery capacity of the far field media
outside the boundary with a good stability both under high frequency
and low frequency loads [42–44]. Previously, the author [28] have
proposed the well worked viscous-elastic dynamic wave absorbing
boundary for poro-elastic medium in 2.5D form by assuming that waves
are propagating in semi-cylindrical form and achieved the expected
goal in application. In this paper, we would still hope to apply this
visco-elastic boundary at both sides of the present model considering its
suitable and convenient advantages.

The ground layers and properties of soil are the same with site
Ledsgard in Sweden operates X2000 train, detailed in literature [13].
Since the ground is symmetric about the track center line, only half of
the ground is discretized to reduce the computational time. The width
and depth of the calculation model are 60m and 23.5m, respectively.
Each node of the isoparametric element used in the present 2.5D pro-
cedure has three degree of freedom. The mesh sizes of the ground layer
are 0.5 m×0.5m, and there are totally 5640 elements and 5808 nodes.
The time calculation interval is 0.0025 s and the discrete point of wave
number is 2048. The solution in time domain will be obtained through
FFT method. Measured parameters of strata and train axle loads are
listed in Table 1 and Table 2 [13], and the track parameters are listed in
Table 3 [14]. When the degree of water saturation Sr=0 in the pre-
sented model, the calculation model degenerates into the elastic one,
and it can be seen from Fig. 3 that the calculation data are in good
agreement with the measured ones [13]. When the degree of water
saturation Sr=100%, the calculation model degenerates into the sa-
turated one. The semi-analytical solution from the previous literature
[23] for a 3D homogeneous water-saturated half space subjected to a
moving point load with a speed of v in the x-direction was used in the
validation of the proposed approach. Three cases with different values
of Vc=0.1Vs, 0.5Vs and 0.9Vs were investigated, where Vsh is the shear
wave velocity of the saturated ground. The material parameters of the
porous medium are the same with Ref [23]. The normalized vertical
displacements w∗ and pore pressure p∗ in the ground at the point (0.0,
1.0, −1.0) under the moving point load were investigated, as shown in
Fig. 4. It can be seen from Fig. 4 that the solution by the present ap-
proach is in good agreement with those from the literature [23], which
illustrates the reliability of the analyze model.

In the following dynamic analysis, the V-G model [45] is used to
describe the relationship between the degree of water saturation and
the pore suction of the unsaturated soil:

= + −S α s[1 ( ) ]e
k m

1 (34)

and the Mualem model [45] is adopted to describe the permeability
coefficients of pore water and pore gas:

= − −k
ρ gκ

η
S S{1 [1 ( ) ] }w

w

w
r e m m1 2

(35a)

= − ⎡⎣
− ⎤⎦

k
ρ gκ

η
S S1 1 ( )a

a

a
r e m

m1 2

(35b)

where α1= 1×10−5, k=4, m=1-1/k=0.75 are fitting parameters
in the Mualem model; Se=(Sr-Sw0)/(1-Sw0) is the effective saturation,
where Sw0=0.05 is the irreducible saturation of water; ηw=1.0×10
−3Pa·s, ηa=1.5×10 −5Pa·s are the viscosity coefficients of pore water

and pore gas; Kw=2.1× 109 N/m2, Ka=1×105 N/m2 are the bulk
modulus of pore water and pore gas; κ=1.0 μm2 is the intrinsic

Table 1
Parameters of foundation soil [13].

Soil layers Thickness/(m) Density/
(kg/m3)

Shear wave
velocity/(m/s)

Poission's ratio

Crust 1.0 1500 72 0.39
Organic clay 3.0 1260 41 0.35
Clay layer 1 4.5 1475 65 0.41
Clay layer 2 15.0 1475 87 0.33

Table 2
Train axle load distribution of X2000 [13].

Carriage No. Pn1/(kN) Pn2/(kN) an/(m) bn/(m) Li/(m)

1 160.5 117.5 2.9 11.6 0.0
2 122.5 122.5 2.9 14.8 22.2
3 122.5 122.5 2.9 14.8 24.4
4 122.5 122.5 2.9 14.8 24.4
5 180.0 181.5 2.9 6.6 24.4

Table 3
Track parameters of X2000 [14].

Properties Values

Track width 2B/m 3
Mass density M/t·m−1 10.8
Bending rigidity EI/MN·m2 200
Damping ratio 0.10

Fig. 3. Time history of ground vertical displacement at the track center for both
test data and simulations with different train speeds: a) 70 km/h, b) 200 km/h.
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permeability of soil. The ground surface is set as the drainage and ex-
haust boundaries, while the bottom and infinite side of the subgrade are
set up as non-drainage and non-exhaust boundaries. In this present
paper, the high saturation condition (Sr=100%, 99% and 90%) for the
ground is investigated, and more results of the other wide range sa-
turation conditions will be reported in a subsequent paper.

4. Ground vibration at different train speeds

Fig. 5 is the time history of vertical displacement of ground surface
at the track center with different degrees of water saturation and train
speeds. When the speed is 200 km/h and 250 km/h (Fig. 5-a, -b), the
saturated ground displacement is substantially larger than that of un-
saturated. The displacement amplitude decreases largely when the de-
gree of water saturation changes from 100% (fully saturated) to 99%
(nearly saturated), although the reduction of the degree of water sa-
turation is quite small (1%). The completely phase change of the soil
(from three phase of nearly saturated to two phase of fully saturated)
brings a completely change of the dynamic characteristics of the soil.
However, the displacement amplitude has almost no change when the
degree of water saturation reduces from 99% to 90%. From Fig. 5 it can
be also seen that, for a given speed (Fig. 5-a, -b, -c, -d), the vibration
displacement of unsaturated ground attenuates faster with time than
the saturated ground. The pore gas in the soil increased the dissipation
rate of the vibration energy. As the train speed increases, the vibration

duration time of unsaturated ground becomes shorter, while that of
saturated ground changes slightly.

Fig. 6 is the vertical displacement amplitude of ground surface vi-
bration at the track center with different degrees of water saturation
and train speeds. It can be seen that both train speed and the pore gas
influence the displacement of the soil. As the train speed increases, the
saturated ground displacement decreases and then keeps almost con-
stant, while for unsaturated ground the influence of the train speed is
not so obvious. When the train speed is larger than 275 km/h, the
displacement of unsaturated soil is slightly larger than that of the sa-
turated soil, which is consistent with the conclusion obtained by
Theodorakopoulos [21]. The reason may be that at higher train speeds
the saturated pore water damping effect is stronger, and that the gas
entrance allows the solid to undertake a greater portion of the applied
load [21]. When the speed is less than 275 km/h, the displacement of
unsaturated soil is substantially lower than that of the saturated soil (as
mentioned in Fig. 5), which shows a contrary phenomenon with Ref
[21]. This may be caused by the difference between Biot theory used in
Ref. [21] and the present three-phase theory, in which the movement of
the pore water and pore gas satisfy Darcy's law respectively, and the
displacement of soil skeleton at low speed is speculated to be hindered
by the movement of pore gas and pore water and their combined
damping. For controlling the ground vibration displacement amplitude
at the track center in the region with high degree of saturation
(Sr=90%–100%), the train speed is recommended to maintain at
about 300–350 km/h. It can also be seen that, for the unsaturated
ground, the influence of degree of water saturation on the displacement
amplitude is not that obvious when Sr=90%–99%.

Fig. 7 is the time history of vertical acceleration of ground surface at
the track center with different degrees of water saturation and train
speeds. It can be seen that at a given speed, the unsaturated ground
acceleration is much larger than that of the saturated one, and the
unsaturated ground acceleration at Sr=90% has little difference with
that at Sr=99%. When the train speeds increase from 200 km/h to
250 km/h, both saturated and unsaturated ground accelerations am-
plitude are greatly reduced by approximately 43% and 52%, respec-
tively. When the train speed increases from 250 km/h to 350 km/h, the
unsaturated and saturated ground accelerations amplitude almost has
no change. At a given train speed, the unsaturated ground acceleration
attenuated faster with time compared to the saturated one; as the train
speed increases, the unsaturated ground vibration duration time gra-
dually becomes shorter, while that of saturated ground changes slightly.

Fig. 8 is the time history of vertical acceleration of ground surface at
8m away from track center (shown as point A in Fig. 2) with different
degrees of water saturation and train speeds. The unsaturated ground
acceleration at Sr=90% and 99% is almost the same at the same speed,
and both are larger than that of the saturated one. With the increasing
of train speed, the unsaturated ground acceleration amplitude gradually
becomes smaller. It can also be seen from Fig. 8 (-a, -b) that, when the
train speed is 200 km/h or 250 km/h, it takes shorter time for the sa-
turated ground acceleration attenuates to zero than the unsaturated
one; while at 300 km/h or 350 km/h Fig. 8 (-c, -d), it takes longer time
for the saturated ground acceleration attenuates to zero. As the train
speed increases, the unsaturated ground vibration duration time be-
comes shorter, whereas for saturated ground the duration time gradu-
ally becomes longer. It can be observed from Figs. 7 and 8 that, the
ground acceleration of the unsaturated soil is larger than that of the
saturated soil at both the track center and 8m away from the track
center. This may be caused that, as pointed by Theodorakopoulos [21],
a small amount of gas entrance into the saturated ground will greatly
reduce the soil stiffness.

Fig. 9 is the acceleration spectrum at 8m away from the track center
with different degrees of water saturation and train speeds. Low fre-
quency vibration (ranged 2–13 Hz) is observed in both unsaturated and
saturated ground. For the saturated ground, the vibration components
at 2 Hz enhanced as the train speeds increase. While for the unsaturated

Fig. 4. Verification of 2.5D FEM for saturated soil: a) Displacement time curve;
b) Pore pressure time curve.
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ground, the acceleration spectrum varies complicatedly. When the
speeds are 200 km/h and 250 km/h, the dominant frequency of un-
saturated ground is between 6.6 and 8.6 Hz, and the corresponding
accelerations are much larger than that of the saturated one. As the
train speeds increase to 300 km/h and 350 km/h, the dominant fre-
quency of both saturated and unsaturated ground decrease significantly
to 3.0–3.8 Hz; and the corresponding acceleration of saturated ground
tend to be as large as the unsaturated ground.

Fig. 10 is the ground vertical displacement amplitude at 8m away
from the track center with different degrees of water saturation and
train speeds. It can be seen that: the saturated ground displacement

increases with the train speed increasing; while the unsaturated ground
displacement reaches the maximum value at the train speed of 250 km/
h and then decreases. The unsaturated ground displacement is larger
than that of saturated one at low speed, which is consistent with the
conclusion obtained by Ref. [21], and tends to be as large as the satu-
rated one when the speed exceeds 330 km/h. This indicates that, dy-
namic displacement of the unsaturated ground is complicatedly influ-
enced by many factors, including train speed, the pore gas, and distance
from the moving load, etc.

5. Attenuation of ground vibration at different train speeds

Fig. 11 shows the attenuation of the ground vertical displacement
amplitude with distance from the track center at different train speeds
at Sr=90%. Within 5m from the track center (near the track), the
ground displacement amplitude at 200 km/h is greater than that in the
other speeds. Near the track, the ground displacements attenuate ra-
pidly with almost the same rate at both high and low train speeds.
Beyond 5m from the track center, the displacement amplitude at each
high speed is almost equal and non-attenuated except at 200 km/h. The
ground vertical displacement attenuates very slowly beyond a certain
distance (about 6m away from the track center) at high train speed.

6. Excess pore water pressures at different train speeds

Fig. 12 is the time history of excess pore water pressure at 0.5 m
depth beneath the track center. Before the train pass, the pore water
pressure at Sr=99% is negative, and at Sr=90% it is zero. At the same
train speed, the excess pore water pressure amplitude increases sharply
with the degree of water saturation increasing, and it is about 5 times at
Sr=99% than that at Sr=90%. The train loads may cause larger ex-
cess pore water pressure in the nearly saturated ground (Sr=99%).

Fig. 5. Time history of vertical displacement of ground surface at the track center with different degrees of water saturation and train speeds: a) 200 km/h, b)
250 km/h, c) 300 km/h, d) 350 km/h.

Fig. 6. Vertical displacement amplitude of ground surface at the track center
with different degrees of water saturation and train speeds.
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Fig. 7. Time history of vertical acceleration of ground surface at the track center with different degrees of water saturation and train speeds: a) 200 km/h, b) 250 km/
h, c) 300 km/h, d) 350 km/h.

Fig. 8. Time history of vertical acceleration of ground surface at 8m away from the track center with different degrees of water saturation and train speeds: a)
200 km/h, b) 250 km/h, c) 300 km/h, d) 350 km/h.
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Moreover the excess pore water pressure decreases little as the train
speed increases.

Fig. 13 is the excess pore water pressure distributed with depth
beneath the track center at different train speeds. It can be found that
the excess pore water pressure of unsaturated ground decreases sharply
at about 3.5–4.0m. The development of excess pore water pressure of
unsaturated ground at Sr=90% prevails in the shallow depth (within
4.0 m), and at Sr=99% it mainly distributes within 8m, which is much
deeper than that at Sr=90%. At the same speed, the amplitude of
excess pore water pressure at Sr=99% is much larger than its coun-
terparts at Sr=90%, and the maximum amplitude of excess pore water
pressure is located at 1.5–2.0 m depth and decreases significantly as the
degree of water saturation decreases.

Fig. 14 shows the excess pore water pressure amplitude varies with
train speeds beneath the track center. We can see that, at the same
speed, the amplitude of excess pore water pressure at Sr=99% is much
larger than that at Sr=90%. With the train speed increases from
200 km/h to 350 km/h, the excess pore water pressure at Sr=99%
decreases slightly and then keeps almost constant; while at Sr=90%,
the excess pore water pressure varies little with the train speed in-
creasing. Therefore, the train speed is recommended to maintain be-
tween 250 and 350 km/h to reduce the excess pore water pressure
amplitude beneath the track center in coastal area of China, where soil
with high degree of water saturation is widely distributed.

Fig. 9. Ground acceleration spectrum at 8m away from the track center with different degrees of water saturation and train speeds: a) 200 km/h, b) 250 km/h, c)
300 km/h, d) 350 km/h.

Fig. 10. Ground vertical displacement amplitude at 8m away from the track
center with different degrees of water saturation and train speeds. Fig. 11. Attenuation of the ground displacement amplitude with distance from

the track center at different train speeds (Sr=90%).
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7. Conclusions

This paper presents an efficient 2.5D FEM formulation for analyzing
the three-phase unsaturated ground vibration induced by high-speed
trains. Effects of the degree of water saturation and the train speed have
been investigated and the following conclusions can be drawn:

(1) At the track center, a very small amount of gas in the saturated
ground largely increases the ground acceleration amplitude. The
gas phase has varied influence to the ground displacement ampli-
tude at different train speed level. The saturated ground displace-
ment is larger than the unsaturated one when the speed is less than
275 km/h. Dynamic displacement of the unsaturated ground is
complicatedly influenced by many factors, including train speed,
the pore gas, and distance from the moving load, etc. The vibration
displacement of unsaturated ground attenuates faster with time
than the saturated ground. The unsaturated ground vibration at
Sr=90% has little difference with that at Sr=99% at the same
train speed.

(2) At 8m away from the track center, the acceleration amplitude of
unsaturated ground is larger than the saturated one. The ground
acceleration of unsaturated ground attenuates faster than the sa-
turated one as the train speed is larger than 330 km/h. As the train
speed increases, the dominant frequency of both saturated and
unsaturated ground decreases.

(3) At 8m away from the track center, the unsaturated ground dis-
placement is larger than that of saturated one at low train speeds.
The saturated ground displacement increases as the train speed
increases, whereas for unsaturated ground it increases and then
decreases.

(4) Within 5m from the track center, the ground displacement ampli-
tude at low train speed is larger than the high train speeds; ground
displacements attenuate rapidly with almost the same rate for both
high and low train speeds.

(5) The excess pore water pressure of unsaturated ground beneath the
track center distributes deeper as the degree of water saturation
increases. The maximum excess pore water pressure amplitude is
located at 1.5–2.0m depth and decreases significantly as the degree

Fig. 12. Time history of the excess pore water pressure at 0.5 m depth beneath the track center at different train speeds: a) 200 km/h, b) 300 km/h.

Fig. 13. Distribution of excess pore water pressure with depth beneath the track center at different train speeds: a) 200 km/h, b) 250 km/h, c) 300 km/h, d) 350 km/
h.

G. Gao, et al. Soil Dynamics and Earthquake Engineering 124 (2019) 72–85

81



of water saturation decreases. The train speed is recommended to

maintain between 250 and 350 km/h on the ground with high de-
gree of water saturation, in order to reduce the excess pore water
pressure amplitude beneath the track center.
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Notation

an, bn distances between axles
B B(—)partial derivative matrices to skeleton displacement and pore pressure of unsaturated soil
B ∗, B(—)∗ conjugate matrix of the B and B(—)
D elastic matrix
EI bending stiffness of the track system
f ξ ω˜ ( , )IT x contact reaction force of the ground
f f˜ , ˜

up up
w a pore water and gas flux matrix in frequency-wave number domain

f̃ up
s equivalent nodal force matrix in frequency-wave number domain

Fw, Fa parameters in Eq. (15) and Eq. (16)
g gravity acceleration
G′ Gpore gas contribution matrices
J Jacobi matrix
|J| determinant of J
kw, ka permeability coefficient of the pore water and pore gas
Ksk, Kg bulk modulus of soil skeleton and soil particle, respectively
Kw, Ka bulk modulus of the pore water and pore gas, respectively
K the total assembled stiffness matrix
K ‘up, Mup stiffness matrix and mass matrices
L0 distance to a reference position ahead of the first axle load position
Li length of the ith car (i=1, 2, 3, 4, 5)
m comprehensive quality of the track and sleepers
n porosity of the unsaturated soil
nj exterior normal direction vector of the boundary
N car numbers of the moving train
Ni shape function
N ‾N shape function matrix of skeleton displacement and pore pressure of unsaturated soil
pc equivalent pore pressure of the unsaturated soil
pw, pa pressure of the pore water and pore gas, respectively
p ξ ω˜ ( , )0 x dynamic train load on the track in frequency-wave number domain
Pn1, Pn2 axle loads for the front and rear bogies
Q′ Q pore water contribution matrices
R the total assembled equivalent nodal force matrix
s pa-pw is matric suction of unsaturated soil
Sr the degree of water saturation
Se effective degree of water saturation of the unsaturated ground
Sw0 irreducible degree of water saturation

Fig. 14. Variation of excess pore water pressure amplitude with train speeds
beneath the track center.
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Sσ stress boundary
Sp flux boundary
t time variable
Ti, p'f stress and pore pressure at the boundary, where f=w, a represent pore water and pore gas, respectively
ue, pwe, pae nodal displacement, nodal pore water pressure and gas pressure
ui, uw, ua displacement of the soil particle, pore water and pore gas
ũr track displacement in frequency-wave number domain
U the total assembled unknown variable matrix
v f fluid velocity at the boundary Sp;
Vc train moving velocity
Vs shear-wave velocity of the saturated ground
w*, p* normalized vertical displacements in the ground at the point (0.0, 1.0, −1.0) under the moving point load
x space variable of train moving direction
α Biot coefficient
α1, k, m fitting parameters of V-G model
δij Kronecker symbol
η, ξ local coordinates
ηi, ξi node coefficients in local coordinates
ηs damping coefficient of the unsaturated soil
ηw, ηa viscosity coefficients of pore water and pore gas
κ intrinsic permeability of soil
λ, μ Lame constants of the unsaturated soil
λc, μc complex form of the Lame constants
ρs, ρw, ρa density of the soil particle, pore water and pore gas
σij, εij total stress tensor, strain tensor of the unsaturated soil
χ(ξx) parameters in Eq. (33)
ω frequency variable corresponding to t
ξx wave number variable corresponding to x

∗δũi δp̃i
f variation of the virtual displacement and virtual pore pressure

“∼" variables in frequency domain
“¯" variables in wave number domain
“·″ first order derivative with time;
“··″ second order derivative with time;
“T″ transpose of the matrix

Appendix A. The detailed coefficients in Eqs. (8) and (12)
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Appendix B. The detailed elements of K and R in Eq. (31):
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