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Abstract This paper presents a micro-scale modeling of
fabric anisotropy effects on the mechanical behavior of gran-
ular assembly under undrained conditions using discrete ele-
ment method. The initial fabrics of the numerical samples
engendered from the deposition under gravity are measured,
quantified and compared, where the gravitational field can be
applied in different directions to generate varying anisotropy
orientations. The samples are sheared under undrained biax-
ial compression, and identical testing conditions are applied,
with samples having nearly the same anisotropy intensities,
but with different anisotropy directions. The macroscopic
behaviors are discussed for the samples, such as the dila-
tancy characteristics and responses at the critical state. And
the associated microstructure changes are further examined,
in terms of the variables in the particulate scale, with the
focus on the fabric evolution up to a large deformation reach-
ing the critical state. The numerical analysis results compare
reasonably well with available experimental data. It is also
observed that at critical state, in addition to the requirements
by classical critical state theory, a unique fabric structure has
also been developed, and might be independent of its initial
fabric. This observation is coincided with the recent theoret-
ical achievement of anisotropic critical state theory. Finally,
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Abbreviations
α Bedding angle with respect to horizontal axis

during gravitational deposition of sample
preparation

σx , σy Principal stresses along x and y directions
respectively

p, q Mean normal stress and deviatoric stress
respectively

C N Coordination number
εa Axial strain along y direction
D Dilatancy
ε

p
v , ε

p
q Plastic volumetric and deviatoric strains

respectively
Fi j Fabric tensor
F ′

i j Fabric tensor by an orthogonal rotation
ϑ Orthogonal rotation angle of fabric tensor
F11, F22, Components of fabric tensor Fi j in
F12 two-dimension
F1, F2 Principal values of fabric tensor Fi j

�,ϕ Intensity and principal direction (with respect to
horizontal axis) of fabric tensor Fi j

�p, ϕ p Intensity and principal direction fabric tensor
Fi j in terms of particle orientation

�c, ϕc Intensity and principal direction fabric tensor
Fi j in terms of contact unit normal

�b, ϕb Intensity and principal direction fabric tensor
Fi j in terms of branch vector orientation

μ Inter-particle friction
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σ i j ,
�
σ i j Stress tensor and deviatoric direction of stress

tensor respectively
A Anisotropic state parameter

1 Introdution

Granular media like sand, due to the influence of gravita-
tional force during the deposition process, may possess initial
fabric anisotropy. Ample experimental evidence has shown
the significance of the impact of the initial fabric anisotropy
on the mechanical behavior of granular materials, and have
been reported widely [1–5]. Among these studies, two are
of general interests. One is that an initially anisotropic sand
may behave dramatically differently when undergone load-
ing with distinct principal stress directions in reference to
the material’s axes of anisotropy, whereas otherwise identi-
cal conditions [2,3]. The other is that the samples composed
of the same material but prepared by different methods also
exhibit strikingly different responses under the same loading
path [5–9].

However, it is noted that a direct assessment or measure-
ment on the fabric anisotropy (either initial or induced) [10],
is scarce in most of the research. To understand how the fabric
evolves and also the role that the fabric played in soil mechan-
ics, as argued in academics, may be of great significance to
disclosing the well-accepted critical state theory [1,11–13].
As pointed out by Li and Dafalias [14], a unique critical-state
line for a soil may be relevant to a unique structure at the crit-
ical state, which is essentially independent of the soil initial
fabric on loading history. They contend that at the critical
state, the initial material fabric as well as the memory of the
loading history has essentially been erased after experienc-
ing a very large shear deformation. This argument has been
proven recently in the perspective of the thermodynamics
theory; see Li and Dafalias [13].

Nevertheless, it is well acknowledged that to quantify the
fabric anisotropy for a granular material is still not easy,
especially in examining the fabric evolution under loading
stage. Some earlier experimental investigations [5,15–17]
involved preserving the fabric of the specimens with epoxy,
cutting small patches, and using microscopy to study the
microstructure of sandy soils. To quantify the microstruc-
ture changes, Oda et al. [18,19], Calvetti et al. [20] and
Wood and Leśniewska [21] used photoelastic rods to form
the tested sample and assessed the micro fabric changes by
optical methods. More recently, computed tomography (CT)
has emerged as a powerful tool to obtain high-quality image
of tested sample during the loading process [22–25]. Partic-
ularly, the microstructure evolution and shear band develop-
ment during the loading can be well quantified by X-ray CT
technique; see Oda et al. [26] and Takemura et al. [27].

Aside from physical examination of the fabric evolutions,
it can alternatively be investigated numerically using discrete
element method (DEM). As a numerical tool, DEM treats the
granular material as an assembly of particles that interact via
a contact logic, tracks translation and rotation of each particle
and can offer a thorough perspective of the overall behaviors
as well as the response at the particulate level. Efforts have
been made in recent year to link the macro-scale and crit-
ical state behavior with the micro-scale analyses by DEM.
Nouguier-Lehon et al. [28] presented a numerical analysis by
DEM biaxial tests, of the influence of particle shape on the
critical state, and the existence of critical anisotropy for vari-
ous particle shapes and different loading directions was also
investigated. By performing a series of biaxial compression
tests using DEM, Rotherburg and Kruyt [29] suggested that
critical state theory should be interpreted in terms of both
the fabric anisotropy and coordination number at the critical
state of the granular materials. Cheng et al. [30] investigated
the uniqueness of critical states with crushable grains using
DEM, and found that grain crushing led ‘critical state’ to
an ambiguous concept. 2D shear cell tests using polygonal
particles by Peña et al. [31], showed the significant influ-
ence of particle shape on the global mechanical behavior
of dense granular media, and the corresponding microme-
chanical level interpretation of the role of particle shape was
presented, along with the critical state anisotropy analyses.
Peña et al. [32] proved samples with different initial den-
sities would approach a unique critical state under biaxial
compression using polygonal particles, even with a wide
range of inter-particle friction coefficients, but some unstable
and fluctuations may existed at the critical state, which was
interpreted as micro-structure rearrangements in the granular
system.

This paper describes a DEM-based analysis on the micro-
mechanical behavior of initially anisotropic granular mate-
rials and discusses the fabric anisotropy (and its evolution)
and also the role that played in the mechanical response. The
focus is placed on the fabric evolution and its relation to
the critical state. To quantify and simulate the effects of the
fabric anisotropy on the behavior of the granular assembly, a
joint tensor based general framework is introduced to address
the effects by both the material’s fabric and principal stress
orientation.

2 Numerical implementation

DEM assumes the material consisting of separate, discrete
particles and is particularly capable of describing the micro-
mechanical behavior of granular assemblies. In this study,
a commercial code P FC2D (Particle Flow Code in 2-D)
[33] based on DEM proposed by Cundall and Strack [34] is
employed. In the code, an explicit time-stepping numerical
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Fig. 1 Grading curve of the numerical sample

scheme is implemented and the motion of individual particles
is traced and contacts with neighboring particles are updated
according to a particular contact law. A detailed description
on the theory and background can be referred to Cundall and
Strack [34].

To consider more realistic particle shape, the clumped par-
ticle is adopted to generate the assembly; each constituent
particle is formed by glueing and overlapping two identical
basic disk particles and behaves as a rigid body that will not
break apart, regardless of the forces acting upon it. The parti-
cle volume/area is varying with the ‘base’ disk particles and
overlapping extent. In this study, the size of the ‘base’ disk
particles are 0.26–0.66 mm in diameter and the clumped par-
ticle has a constant aspect ratio (AR) = 0.6, which is defined to
characterize the shape of clumped particle as shown in Fig. 1.
The sample equivalent particle diameter, defined as the diam-
eter of the circular particle with the same area as the clumped
particle, falls also in the range of 0.26 and 0.66 mm. The
resulting particle grading curve is illustrated in Fig. 1, with
d50 = 0.535 mm. Unlike the circular particle, the clumped
particle has its distinct orientation, i.e. the direction of long
axis.

The numerical sample is generated using deposition
method, which allows the particles to settle freely in place
under gravity as illustrated in Fig. 2, very similar to the sam-
ple preparation method for sand in the laboratory [35]. The
sample prepared by this method has distinct initial fabric
anisotropy due to the apparent bedding plane. If the gravi-
tational force is applied upon in different angles to the hor-
izontal direction, the bedding plane is in different orienta-
tion and thus material’s fabric anisotropy. It is emphasized
that particle orientation is not an essential measure of fabric
anisotropy of materials, which implies that if particles do not
have a preferred axis, the sample formed spherical/round par-
ticles could still be anisotropic as long as the packing would
be anisotropic.

Deposition direction 

Bedding plane 

Gravitational force 

Bedding angle α

Individual particle 

Fig. 2 Creation of the numerical sample under gravitational force

Figure 3 illustrates the procedures of the sample genera-
tion. Particles are firstly generated with random orientations
in a bounded rectangular area (50 mm × 50 mm). With ref-
erence to the inclination of the bedding plane, a gravitational
acceleration can be applied to force the particles deposit per-
pendicularly to the bedding plane. It is noted that during
the sample generation process, temporarily assigned inter-
particle friction is helpful to control the density of the sam-
ple. Once all the particles have been deposited and the whole
system reaches an equilibrium state, the lower right part with
a dimension of 25 mm×25 mm (Fig. 3b, c) is trimmed as the
test sample. The sample is applied with boundary conditions
given in Fig. 4, and is assigned with a normal inter-particle
friction μ = 0.5 afterwards. Other parameters for the linear
spring-slider (normal and tangent bi-directional linear spring
and tangent Coulomb-type slip model) contact law used in
this study are summarized in Table 1.

Prior to the shearing, each sample will be isotropically
compacted to the desired stress state. Then, the sample is
sheared under constant volume condition, which is presum-
ably equivalent to the ‘undrained’ shear test for saturated
soil. In the test, the equivalent ‘excess pore water pressure’
is the variation in the lateral normal stress; such that both
the vertical and horizontal stresses derived from DEM sim-
ulations are in terms of effective stress, as they are transmit-
ted through the inter-particle contacts; see Yimsiri and Soga
[36]. As shown in Fig. 4, the deviatoric load is applied in a
strain-control manner, by simultaneously pushing the upper
and lower walls inward the sample with a very small loading
rate, while the position of lateral walls is adjusted accordingly
to satisfy no volumetric change condition.

3 Initial anisotropy quantification

The geometrical packing of particles with associated voids
contributes to the general feature: fabric anisotropy, for

123



560 Z. X. Yang et al.

Fig. 3 Numerical sample
generation procedure. a
Deposition under inclined
gravity, b equilibrium state after
deposition, c numerical sample
by partition
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Fig. 4 A numerical sample with boundary conditions

Table 1 parameters used in numerical simulations

Mass density Normal/tangential stiffness Particle/wall Damping
(kg/m2) of particle (N/m)/wall friction parameter

2,600 109 0 0.7

granular materials. It is often to use the micro-scale vari-
ables to quantify their fabrics, including particle orientation,
contact unit normal and branch vector orientation that can be
characterized by a pair of unit vectors n and −n, with oppo-
site directions. Figure 5 defines the representations of these
micro-scale variables in a granular assembly. A fabric tensor
F can be expressed in a general form [37]:

Fi jlm··· = 1

2N

2N∑

k=1

nk
i nk

j n
k
l nk

m · · · (1)

where 2N is the total number of the measurements, the
superscript k denotes the kth unit vectors among 2N , and
nk

i (i = 1,2,3) are three direction cosines of the unit vector
nk with respective to the reference axes xi (i = 1, 2, 3) in
a Cartesian coordinate system. However, a spherical coor-
dination system is often used and shown in Fig. 6. In this
coordination system, the second order fabric tensor can be
explicitly expressed into

(a)
(b) 

(c) 

Fig. 5 Micro-quantities in a granular assembly. a Branch vector, b
particle orientation, c contact unit normal

n

x1

x3

x2

Fig. 6 A spherical coordinate system

Fi j =
⎛

⎝
F11 F12 F13

F21 F22 F23

F31 a32 F33

⎞

⎠ = 1

2N

×
⎛

⎝
	 sin2 θk cos2 ϕk 	 sin2 θk cos ϕk sin ϕk 	 sin θk cos θk cos ϕk

	 sin2 θk cos ϕ sin ϕk 	 sin2 θk sin2 ϕk 	 sin θk cos θk sin ϕk

	 sin θk cos θk cos ϕk 	 sin θk cos θk sin ϕk 	 cos2 θk

⎞

⎠

(2)

Particularly, for 2-D case, the fabric tensor can be further
reduced into the form
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Table 2 Summary of initial conditions of biaxial tests on ‘loose’ samples

Bedding angle α (◦) Void ratio e Orientational initial fabric Contact unit normal initial fabric Branch vector orientation

�p ϕp �c ϕc �b �b

0 0.216 0.369 0.0 0.228 91.2 0.108 89.9

30 0.216 0.287 24.9 0.174 109.0 0.087 105.2

45 0.215 0.263 43.5 0.176 132.2 0.094 135.0

60 0.217 0.285 62.3 0.202 152.8 0.123 152.3

90 0.216 0.369 89.6 0.228 1.2 0.108 179.9

Fi j =
(

F11 F12

F21 F22

)

= 1

2N

(
	 cos2 ϕk 	 cos ϕk sin ϕk

	 cos ϕk sin ϕk 	 sin2 ϕk

)
(3)

In general, the off-diagonal components of Fi j do not van-
ish, and through certain tensor transformation, the principal
values of Fi j , F1 and F2 are given by

F1,2 = 1/2(F11 + F22) ±
√

1/4(F11 − F22)2 + F2
12

= 1/2(1 ± �) (4)

where � =
√

1/4(F11 − F22)2 + F2
12 is a measure of inten-

sity of fabric anisotropy. By substituting of the corresponding
components of Fi j , it can be expressed as

� = 1

2N

√(
	 cos 2ϕk

)2 + (
	 sin 2ϕk

)2 (5)

This expression is identical with that of the vector magnitude
used by Curray [38], if n represents the preferred orienta-
tion of the particle. The major principal direction of fabric
anisotropy can be obtained by

ϕ = tan−1 [2F12/(F11 − F22)] /2 (6)

Equation (6) results in the magnitude of ϕ varying in the
range of −90◦ and 90◦. For convention, the ϕ value can be
translated into the range of 0◦ and 180◦ with reference to
the horizontal axis. In present study, the fabric anisotropy
will be quantified by micro-parameters of particle orienta-
tion, contact unit normal and branch vector orientation, and
their values of intensity � and major principal direction ϕ

are differentiated by the superscripts p, c and b respectively.
It is noted that above microstructure based definitions of

fabric anisotropy do not have length scale and thus are not
per-volume measure, such that proper normalization rules
should be followed with respect to the specific volume of
the specimens, before they are applied to continuum theory
of ACST [13,39]. However, within the main scope of this
paper, only undrained tests on specimens with nearly close
densities are considered, so obtained measures of the fabric
anisotropy could be treated as ‘scaled version’ of those used
in the continuum applications.

=0o
=30o =45o

=60o =90o

Fig. 7 Initial configuration of particle assemblage with various bed-
ding angles

As summarized in Table 2, five samples with different bed-
ding angles α = 0◦, 30◦, 45◦, 60◦ and 90◦, are generated. It
is noted that a temporary inter-particle friction μ = 0.35 is
assigned in order to achieve the desired initial density during
the deposition under the inclined gravitational acceleration.
After that a normal μ = 0.5 is restored, and the particle
assembly is then brought to an equilibrium state. After the
isotropic consolidation to 1,000 kPa, all the samples have
close initial void ratio, varying in a narrow range of 0.215–
0.217, with a mean relatively density Dr =∼34 %, according
to Yang et al. [40]. As the spindly clumped element adopted
in this study has an identifiable orientation, and the elon-
gated particle tends to lie with its long axis paralleling to
the bedding plane. The respective sample configurations for
various bedding angles are illustrated in Fig. 7. As shown in
Fig. 8, through statistical analysis using Eq. (4), the initial
distinct structures/fabrics of samples associated with differ-
ent bedding angles can be identified. For each bedding angle,
it can be seen that there is a trend orientation for the parti-
cle orientation, contact unit normal or branch vector orien-
tation. Summarized in Table 2 are the resulting initial fabric
anisotropy in terms of particle orientation, contact unit nor-
mal and branch vector orientation. It can be seen that the
initial preferred particle orientations almost coincide with
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Fig. 8 Distribution of samples with various bedding angles at initial state
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Fig. 9 Characterization of inherent fabric anisotropy of Toyoura sand with preferred particle orientations for vertical sections (after Yang et al.
[5])

Fig. 10 Contact unit normal
(β) distributions of four different
samples (after Oda [41])
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the bedding angles (inclination of bedding plane defined in
Fig. 1), while those of the contact normal orientation and
branch vector orientation are nearly normal to the bending
orientation. As expected, although the samples are generated
with different bedding planes, the initial fabric intensities
and densities of the samples are varying in a fairly narrow
range.

The achieved ‘virtual’ samples can be compared with real
samples with sand deposited under gravity in laboratory. Oda
[41] prepared the samples by placing the sands layer by layer
and then tapping them into desired density. The resulting
microstructure of non-spherical sands can be preserved by
polyester-resin first and assessed later. Their results show

that the concentration of particle orientation in the bedding
plane for the sample prepared by tapping method, similar to
that by gravity deposition. Recently a microsturctural analy-
sis by Yang et al. [5] adopting the same method on Toyoura
sand (composed mainly of angular and elongated particles)
sample showed comparable results, see Fig. 9, clearly show-
ing that the sample prepared by dry deposition method has an
apparent initial anisotropy with respect to preferred particle
orientation distribution, either in the form of histogram or
rose diagram. Both experimental observations compare rea-
sonably well with Fig. 8 from the present numerical analysis,
suggesting a direct dependence of fabric direction on the bed-
ding plane.
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Fig. 11 Effects of α on undrained behavior of the granular assembly (Dr ∼ 34 %). a q–p′. b q–εa. c q/p′–εa. d p′–εa

For granular materials, the externally applied loading is
transmitted by the force network via contacts between par-
ticles. The force chain is dependent not only on the parti-
cle geometry that governs the number of contacts for each
particle, but also on the contact orientations. To compare
with the experimental data, contact normal distributions from
Oda [41] are re-plotted into rose diagrams for four different
sands, as shown in Fig. 10. It is noted that contact normal β

in his study is referenced to the vertical axis. As shown in
this figure, the contact unit normal is concentrated in vertical
plane, which is perpendicular to the bedding plane for all the
four sands.

4 Macroscopic response

A series of undrained biaxial tests were conducted to inves-
tigate the mechanical behavior of the five samples with dif-
ferent bedding planes described above. Noting that all the
samples have close initial fabric intensity and density except
for the fabric directions, the samples can be considered as
being rotated with different angles with respect to the load-
ing axes. Recalling that the influence of the fabric anisotropy
(not only intensity but also preferred direction) is referenced
to the loading directions, the variations in mechanical behav-
ior resulting from the samples with different bedding angles
can also reflect the influence arising from the principal stress
direction.

Figure 11 presents the mechanical responses of the five
‘loose’ samples with e0 = 0.215–0.217 of different angles
α = 0◦, 30◦, 45◦, 60◦ and 90◦. Shown in Fig. 11a are
the effective stress paths in the p′–q plane, where p′ =
(σ ′

x + σ ′
y)/2 and q = σx − σy . It can be seen that effec-

tive stress paths are different for the samples with various
bedding angles. As the inclination of bedding angle α (with
reference to the horizontal direction) increases, the sample
transforms from dilatant response into contractant behav-
ior. For α = 0◦, 30◦ and 45◦, the stress–strain behaviors
exhibit strong hardening and fairly stable responses, while
for α = 60◦ and 90◦, the samples experience a dominant
strain-softening behavior in the early stage of shearing.

Figure 11b shows the stress–strain relationships for the
five samples, with εa denoting the axial strain along y direc-
tion. Despite of the discrepancy on the stress–strain curves,
the deviatoric stress at large strain level is flattened off and
tends to be stabilized within a narrow band �q = ±200 kPa.
Shown in Fig. 11c is the development of the mobilized stress
ratio of q/p′ against the axial strain. It is found that the five
samples have distinct stiffness when εa < 10 %; the higher
the bedding angle, the smaller the stiffness; when εa > 10 %,
all samples almost converge into a constant stress ratio q/p′
value of ∼0.866. As an alternative to Fig. 11a, Fig. 11d
presents the evolution of the mean normal effective stress p′
under shearing. It can be seen that p′ value for samples with
α = 60◦ and 90◦ drops up to εa = 3 %, and then picks up with
εa increasing further, while samples with α = 0◦, 30◦ and
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Fig. 12 Effects of α on undrained behavior of the granular assembly (Dr ∼ 64 %). a q–p′. b q–εa. c q/p′–εa. d p′–εa

45◦ exhibit hardening behavior immediately after shearing.
It is also noted that the effective stress for all the cases varies
within a narrow range �p′ = ±100 kPa at large strain level
εa ∼65 % and tends to converge to a constant value. This
observation suggests the critical state may not be altered by
the initial fabric or the stress path (if considering the principal
stress direction being rotated with respect to the soil fabric).
To verify this finding, another series of tests on ‘medium-
dense’ samples with e0 = 0.179–0.181 (Dr =∼63.6 %) are
performed and their responses are shown in Fig. 12. A sim-
ilar finding of the convergence in p′ and q for all the five
‘medium-dense’ samples at large strain εa ∼65 % is noted
on Fig. 12b, d, although apparently different behaviors are
seen at small strain in Fig. 12a. As shown in Fig. 12c, the q/p′
values flatten off at strain εa > 15 % to a plateau ∼ 0.856,
which is very close to that for ‘loose’ samples. This suggests
that aforementioned initial fabric independence of critical
states is valid for both loose and dense granular media.

The observations above compare reasonably well with
experimental results. Oda [15] reported a series of drained
triaxial tests performed on samples with different bedding
angles and a tendency of the decrease in dilatancy was
identified as the bedding angle increases. Yoshimine et al.
[2] and Nakata et al. [3] studied the influence of princi-
pals stress direction on the undrained response using hollow
cylinder tests. In their tests, the principal stress direction
was varied with respect to the soil fabric, while main-
taining a constant b value (intermediate stress parameter

b = (σ′
2 − σ′

3)/(σ
′
1 − σ′

3)). Both test results confirm the sig-
nificant effects of principal stress direction on the tendency
of dilatancy characteristics of sand.

The dependence of the critical state behavior on the stress
path (or shear mode) was also confirmed by experimental
tests [1,3,42]. Typically as shown recently by Yang et al.
[5], identical sand samples subjected to three different stress
paths, namely triaxial compression (TC), torsional shear
(TS) & triaxial extension (TE), exhibit completely differ-
ent responses: the specimen in TE is much more contractive
than that in TC, with the TS one in between. This difference
also implies the anisotropic effect of the orientation of the
major principal stress direction, with reference to the depo-
sition plane of the samples. It should be pointed out that the
influence of stress paths on the undrained behavior cannot be
fully investigated by the present two-dimension analysis, as
the influence of the intermediate principal stress may not be
considered.

5 Microscale observation

To understand the underlying mechanism of fabric anisotropy
effects on the overall behavior shown above, the microscopic
fabric evolution characteristics are examined for ‘loose’ sam-
ple tests shown in Fig. 11. Figure 13 plots the variation of
the coordination number C N against the shear strain for the
aforementioned five samples, where C N is defined as the
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mean contact numbers per particle within a granular assem-
bly. The C N values decrease at the beginning and then pick
up to increase for all cases. For the contractive samples with
larger bedding angles α = 60◦ and 90◦, there is a severe drop
in C N value, while for samples with smaller bedding angels
exhibiting more dilative response, a relatively less reduction
is observed at the early stage of shear εa < 1 %. The reduc-
tion in the C N values coincides with the loss of effective
mean normal stress, as seen in Fig. 12d, where a contractive
behavior dominates before reaching the transformation state
[43]. When εa >∼20 %, the C N values are not appreciably
affected by the initial fabric, and tend to converge into a stable
value ∼4.3.

When the samples are subjected to loading, their macro-
scopic response is interrelated to the particles interacting
through the contacts in the micro-scale. The microstruc-
ture changes include the contact anisotropy, particle re-
orienting and particle relocating, which are main features of
induced anisotropy for granular materials. Evaluation of the
microstructure quantities and how they evolve under loading
may offer further insights into the overall behaviors stated
above. Figure 14 illustrates the evolution characteristic of
contact unit normal. Although the major directions of the
contact unit normal are differently oriented before shearing,
they are gradually re-oriented and their distributions tend to
be concentrated in the major principal stress direction (verti-
cal) when εa > 4 %, irrespective of the initial respective pre-
ferred directions. However, the intensities of the contact nor-
mal anisotropic distributions are undergone large variations,
before approaching a unique value ∼0.42 at critical state.
The general trend of the distributions in contact unit nor-
mal shows that the intensity of anisotropy �c increases with
the shear strain, bringing the samples to more anisotropic
states. Shown in Fig. 15 are the distributions of branch vec-
tor, which exhibit similar trends to the contact unit normal
for both the orientation and the intensity of anisotropic dis-
tribution, although less anisotropy intensities (critical value

0.21±0.02) are noted as comparing to the contact unit normal
(�c < �b at critical state).

Besides the contact unit normal and branch vector orien-
tation, particle re-orientation is another important feature for
granular materials. Figure 16 shows the detailed evolution
characteristics of anisotropic distributions of preferred par-
ticle orientation in both intensity and direction. As is seen
in Fig. 16(a), unlike the contact unit normal and branch vec-
tor orientation, the variations in the anisotropy intensity of
particle orientation span a rather wide range as the loading
proceeds. It is interesting to see that for highly contractive
case α = 90◦, the intensity �p undergoes a significant ‘V’
style variation: as shearing starts, it drops quickly down to
nearly zero (a purely isotropic state when �p = 0), then
recovers to climb up and join with other cases. At large strain
εa ∼65 %, the intensity of anisotropy �p is converged into a
range 0.54 ± 0.03. Although the initial particle orientations
are different for the samples, the particles tend to re-orient
to the direction of minor principal stress (horizontal) as the
axial strain increases, as shown in Fig. 16b.

6 Discussion

According to the classical critical state theory [44,45], crit-
ical state is defined as the state where under constant stress
the material deforms in shear without volume change, i.e.

ṗ′ = q̇ = ε̇v = 0 but ε̇q �= 0, (7)

where p′ is the effective mean normal stress, q the deviatoric
stress, εv the volumetric strain, εq the deviatroic strain, and a
superposed dot signifies the rate. However, based on experi-
mental observations, it has been suggested that a unique crit-
ical state, defined in the p′ − q − e (void ratio) space, may
exist for soils under shearing, that is, at critical state, both the
stress ratio and void ratio (for a given p′) are constant, i.e,
(
q/p′)

c = M and e = ec
(

p′) (8)

where M is a material intrinsic coefficient and e = ec(p′)
defines a unique critical state line in the e − p′ plane, with
subscript ‘c’ denoting critical state.

The micro-scale analysis shown above suggests that the
critical state fabric is highly anisotropic, which has also been
widely observed experimentally or numerically [2,3,40,46].
However, as pointed out by Li and Dafalias [13], the clas-
sical theory assumes that the critical state itself is indepen-
dent from the fabric, which is not true and might be directly
related to disclose the long debating over the uniqueness of
critical state line. Based on thermodynamic theory, Li and
Dafalias [13] proposed so called anisotropic critical state
theory (ACST), in which the fabric critical value is addi-
tional to the requirements set by the classical critical state
theory expressed in Eq. (8). That is to say, apart from the
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macroscopic requirements of critical values for the stress and
void ratio at critical state, the micro fabric has to also satisfy
the critical value.

The numerical examples of biaxial shearing shown above
indicate that critical state is unique and also independent of
the initial fabric. The uniqueness is not only applied to the
stress and strain measurements shown in Fig. 11, but also to
the microscopic fabric, see Figs. 13, 14, 15 and 16. How-
ever, according to ACST, critical state for a given material
is not necessary attainable, with which an example will be
illustrated hereafter.

Another sample is generated by deposited under gravity
with α = 90◦, and the initial e0 = 0.220 after the isotropic

consolidation to 1,000 kPa is slightly looser than the samples
(ē0 = 0.216) shown above. An ‘undrained’ biaxial shear-
ing is applied and the effective stress path and stress-strain
curve are shown respectively in Fig. 17a, b. Different from the
behavior for sample with α = 90◦ and ē0 = 0.216, the new
sample completely loses its strength and is failed at εv < 3 %
with ‘full liquefaction’, as defined in saturated soils. Then a
natural question arises, that the sample has reached the crit-
ical state yet? Based on numerical analysis on samples with
e = 0.215–0.217, it is found that all the samples are sheared
up to large deformation and terminated at a state satisfying
the conditions expressed in Eq. (8) and fabric requirement,
which are also proclaimed by ACST. Shown in Fig. 17c is
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a unique critical state line, with Point 1 and Point 2 being
critical states for e0 = ec1 = 0.216 and e0 = ec2 = 0.220,
respectively. It is noted that as ec2 is slightly greater than ec1,
the critical state value p′

c2 is less than but in the neighboring
range of p′

c1. Clearly ‘liquefied’ Point 3 is not a critical state
as p′

3 = 0 �= p′
c2.

However, because Points 1 and 2 are critical states, their
fabrics should also satisfy their respective values, i.e. F1 =
Fc1 and F2 = Fc2. We will show that at Point 3, the fabric is
also not equal to the critical value, i.e. F3 �= Fc2. It is noted
from Fig. 13 that critical value of CN at Point 1 C Nc1 =∼4.2,
while C Nc2 at Point 2 should be varied in Point 1’s neigh-
borhood. But numerical result of sample with e0 = 0.220
shows that C N3 = 3.0 at ‘liquefied’ Point 3, much less than
required critical value. Shown in Fig. 17d are the fabric evo-
lutions against axial strain εa, including contact unit normal,
branch vector orientation and particle preferred orientation.
On this figure, the anisotropy intensity � is presented with the
bottom x axis and left y axis coordinate, while the anisotropy
direction ϕ is shown under top x axis and right y axis. It is
found that although anisotropy directions are more approach-
ing the critical values, the intensities �c,�b, and �p are far
away from their respective critical values, again confirming
that ‘liquefied’ state is not a true critical state.

It is known that particle breakage and crushing are
inevitably occurred when high stress level is applied to the

granular materials. However, in this paper, particle breakage
and crushing are not considered, and the final materials are
treated as the same. If particle crushing takes place, the grad-
ing of the particles will differ from the original one, and the
two materials will be treated as differently, such that their
critical state lines will be of course not unique, as elaborated
by Wood and Maeda [46], Bandini and Coop [47].

7 Incoporating fabric effects and dilatancy
into modeling

It has been shown that a dramatic difference exists among the
responses of various samples generated with different bed-
ding angles, but sheared under the same biaxial shear stress
path. It has also been noted that the principal directions of
initial fabrics of the samples are directly related to the bed-
ding angles of particle deposition in the sample generation
process, while all samples have almost identical intensity of
fabric anisotropy. Figure 18 illustrates the dilatancy char-
acteristics of the sample responses under the biaxial shear,
in which dilatancy is defined as D = dε

p
v /dε

p
q with sub-

scripts v and q denoting volumetric and deviatoric strains
respectively, and superscript p signifying plastic. The dila-
tancy responses vary with different initial fabrics of the test
samples, remarkably before the phase transformation state,
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which is a transition state from contraction to dilation [43].
Figure 18 clearly emphasizes that the samples with smaller
bedding angles are more dilatant and stiffer, while samples
with larger bedding angles exhibit more contractive and soft
responses.

In theory, rotating the stress direction on an isotropic soil
is the same as simply rotating the reference frame, while
rotating the coordination of soil’s fabric is equivalent to the
rotating of the stress direction. The elementary framework of
plasticity theory is described without explicitly considering
fabric anisotropy. For an anisotropic soil, its internal structure
or fabric must be described by tensor quantities. That is, its
internal variables must include at least one tensor quantity.
Assuming we define one symmetric second order tensor, F,
to describe soil anisotropy, a constitutive equation, say, the
yield function, can be expressed as [48]

f = f (σ, F) = 0 (9)

meaning that the function depends on both the applied stress
σ and the material fabric F. Based on the representation the-
ory, the objectivity requirements demands that the function
must be an isotropic function, i.e., it must be a function of
the isotropic invariants of σ and F. It follows

f = f
(
J1, J2D, J3D, K1, K2D, K3D, L1,L2,L3,L4

) = 0

(10)

where J1, J2D and J3D are three invariants of σ, K1, K2D

and K3D are three invariants of F, and
⎧
⎪⎪⎨

⎪⎪⎩

L1 = σ : F
L2 = σ : F2

L3 = σ2 : F
L4 = σ2 : F2

(11)

are four joint invariants of σ and F.
It has been shown that to quantify and simulate the influ-

ence of the fabric anisotropy of granular materials objec-
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tively, the loading should be reference to and working conju-
gatedly with the fabric anisotropy coordinate [5,9,14,49]. In
this study, the initial fabric anisotropy and its evolution dur-
ing the loading process have been identified and quantified,
and thus anisotropy effects can be explicitly incorporated into
the constitutive model. Considering the scope of this paper,
we will illustrate how to link the micro-structures (also their
evolutions) with the loading path influences by using the joint
tensor and anisotropic parameter.

Under two dimensional conditions, a second-order fabric
tensor Fi j in Eq. (3) can be written into a matrix form

Fi j =
[

(1 + �)/2 0
0 (1 − �)/2

]
(12)

in which � is a descriptor of the intensity of fabric anisotropy
in a granular assembly and referring to either initial or
induced anisotropy. Consider an orthogonal rotation ϑ of
the fabric tensor with respect to the horizontal direction, and
the new fabric tensor F′ can be expressed using the transfor-
mation equation as

F ′
i j = liml jn Fmn (13)

where li j = cos(x ′
i , x j ), the cosine of angle between axes

of x ′
i and x j with superscript ′ denoting rotated coordinate

system. The rotated fabric tensor F′ can be explicitly written
into

F ′
i j =

[
(1 + � × cos 2ϑ)/2 −� × sin ϑ cos ϑ

−� × sin ϑ cos ϑ (1 − � × cos 2ϑ)/2

]
(14)

In general, the off-diagonal components of F ′
i j do not vanish.

In the biaxial shear mode, the stress tensor σ can be expressed
as

σi j =
[

σx 0
0 σy

]
(15)
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And its loading direction
�
σ can be represented by the devia-

toric part s normalized with its module |s| as

�
σ i j = 1√

2

[
1 0
0 −1

]
(16)

It is aware that the stress–strain relation of an anisotropic
material will be different if the relative orientation of the
material and stress changes. Therefore, the constitutive laws
for anisotropic materials must involve non-scalar valued
parameters that represent the orientation of the material.

The first joint invariant of loading direction tensor (Eq. 16)
and the fabric tensor (Eq. 14) scaled by

√
2 can be defined as

A = √
2

(
�
σ i j : F ′

i j

)
= � × cos 2ϑ (17)

The index A is a state parameter, characterizing the anisotro-
pic state in response to the variations either in the initial or
the induced fabric anisotropy during the loading process. The
variation of the anisotropic state parameter with the fabric
anisotropy parameter � is shown in Fig. 19, where ϑ varies
from 0◦ to 180◦. It is seen that the A serves as a state parameter
to characterize the influence of the fabric on the mechanical
behavior of granular materials under loadings, and in general
it may be undergone changes either in magnitude or direction
during the loading process. It is noted that if the material is
in an isotropic state with � = 0, the influence of fabric
anisotropy vanishes by ensuring the A value being zero.

Based on the results of numerical simulation, it is found
that the dilatancy of the granular assembly depends on the
anisotropy, such that it could be explicitly made as a func-
tion of anisotropic state parameter A, to reflect its influence.
Similar treatments are also extended and applicable to the
plastic modulus and strength, as discussed by Yang et al. [5],
Li and Dafalias [14], where the critical state line is no longer
unique and assumed as a function of the state parameter, such
that the dilatancy is implicitly influence by the anisotropic
state. If a unique structure formed at critical state, the corre-
sponding critical state line should be unique, which has been
advocated recently by Li and Dafalias [13], and also con-
firmed earlier by numerical analysis in this study. However,
one may assume that the dilatancy is directly related to the
anisotropic state, so are plastic modulus and strength if nec-
essary. In general, both the initial and induced anisotropy can
be modeled simultaneously by introducing this anisotropic
state parameter A.

8 Conclusions

In this paper, a DEM based numerical analysis was reported
to simulate the initially anisotropic granular assembly sub-
jected to different principal stress directions with respect to its
initial fabric. The numerical samples were achieved by apply-
ing inclined gravity acceleration during the particle deposi-

tion, such that the direction of the initial fabric anisotropy
was varied with the bedding plane, but with almost the same
intensity of fabric anisotropy. The macroscopic responses of
the samples under identical bi-axial compression, as well as
the induced microstructure changes were further examined,
including the contact properties, particle orientation and par-
ticle rolling. To reflect and model the anisotropy effects on
the dilatancy and other mechanical behavior of granular soil,
a general framework based on the joint tensor and anisotropic
parameter was introduced in the end. The following conclu-
sions can be drawn from this study.

1. The samples generated by varying gravitational force
direction are of different particle preferred orientations,
contact unit normals and branch vector orientations. The
anisotropy direction of initial fabric is dependent on the
bedding angle, while the anisotropy intensity is fairly not
affected.

2. The mechanical behaviors and dilatancy of the samples
with identical initial conditions except for anisotropy
direction may vary dramatically when sheared by biax-
ial compression under constant volume condition (equiv-
alent to ‘undrained’ condition). The general observa-
tions were fairly comparable to the reported experimen-
tal results. Nevertheless, both the mean normal effective
stress and deviatoric stress at critical state seem to be
independent of the initial fabric.

3. Both the contact unit normal and branch vector orien-
tations that represented by the anisotropy intensity and
direction were subject to significant variations under
shearing. The initial fabric anisotropy tends to be com-
pletely erased as deformation progresses, and a unique
fabric for the induced anisotropy at critical state was
observed both in intensity and direction, which was par-
alleled to the major principal stress direction. The obser-
vations agree reasonably well with existing experimental
work. The preferred particle orientation was gradually
reoriented to the minor principal stress direction (hori-
zontal) and the results also show that a unique value of
fabric anisotropy intensity at critical state.

4. A unique critical state was observed for samples with
initially different fabric orientations. In the framework
of ACST, the critical state is not only defined to satisfy
the conditions of the stress and void ratio required by
classical theory, but also has an additional requirement of
critical value for fabric anisotropy. The numerical analy-
sis presented in this paper confirmed this point and also
showed sample sheared into full ‘liquefaction’ is not a
true critical state failure.

5. A general framework was introduced to quantify and
model the effects of both the initial and induced anisotr-
opy. A joint tensor in terms of the fabric tensor and devi-
atoric stress tensor was defined and its invariant A was
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extracted to represent the anisotropic state. In general,
the value of A was varied with the fabric anisotropy in
both magnitude and direction. The numerical simulation
results suggested that dilatancy, plastic modulus, strength
of granular assembly could be made as functions of the
anisotropic state parameter A.

6. Last but not least, given the limitation of the two dimen-
sional analyses, 3-D DEM simulations are more favorite
to investigate the critical state behavior of and fabric
anisotropy effects on granular materials, such as fabric
evolution and critical state quantification, energy dissipa-
tion, and loading direction and critical fabric orientation
under general stress states, to help to establish a linkage
between the micro-scale and continuum level for granu-
lar media. More investigations along this line are needed
in the future.
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