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A B S T R A C T

The existing longitudinal structural model of shield tunnels usually simplify the tunnel as a Euler-Bernoulli beam
on elastic foundation, which ignores the shearing dislocation between rings. To model the dislocation between
rings, this paper proposed a soil-tunnel interaction model based on the Timoshenko beam simplified model
(TBSM) of tunnel on Vlasov foundation. The governing differential equation and the closed-form solution for
TBSM on Vlasov foundation subjected to any given pressure are derived with consideration of two types of
boundary conditions. The proposed model was adopted to analyze the behaviors of a shield tunnel subjected to
external forces transferred from surcharge load on the ground surface. Factors influencing the longitudinal
behavior of shield tunnels are discussed. The factors include the equivalent of shear stiffness, location of load
application, and the rotational stiffness of the joint between tunnel and station. The results indicated that Euler-
Bernoulli beam model underestimates deformation and overestimates the internal forces in the tunnel structure.
When the load application is close to the station, with the decrease of the distance between the load and the
station will lead to a slightly decrease of the maximum settlement of the tunnel, and an increase of the maximum
internal forces and the maximum joint deformation. A stiffer joint between tunnel and station will cause greater
internal forces at the location of joint.

1. Introduction

Shield tunneling method has been widely utilized in soft deposits
due to the following many advantages: highly safe construction effi-
ciency, and less environmental impacts (Shen et al., 2016; Liu et al.,
2018; Cheng et al, 2017b). The lining of a shield tunnel is composed of
precast reinforced concrete segments connected by steel bolts (Cheng
et al., 2017a). During long-term operation, shield tunnels often suffer
from differential settlement to cause joint opening (Shen et al., 2014;
Wu et al., 2017) and longitudinal structural deformation due to the
effect of uneven subsoils, nearby construction (Chai et al., 2018), land
subsidence (Shen and Xu, 2011; Shen et al., 2013), traffic loading, and
groundwater leakage (Mair and Taylor, 1997; Mair, 2008; Wu et al.,
2013; Huang et al., 2015). Large longitudinal deformation will in-
evitably result in a series of problems such as deformation of joints,
cracks of concrete segments, groundwater leakages, distortion of track,
which may threaten safety during train running (Shen et al., 2015; Wu
et al., 2015). The differential settlement and longitudinal deformation

of shield tunnels during operation has drawn more and more attention
(ITA, 2000; Zhang et al., 2018).

In the last three decades, many attempts have been made to es-
tablish a soil-tunnel interaction model for longitudinal analysis (Liao
et al., 2008; Huang et al., 2015; Ren et al., 2018). The most common
way is to consider the tunnel/soil interaction problem as a beam
structure on elastic springs, which is a one-dimensional problem. For
tunnels, typical structural models include beam-spring model (Koizumi
et al., 1988) and longitudinal continuous model (Shiba et al., 1988).
The beam-spring model considers the ring as an one-dimensional short
beam, and the joints as the spring elements to resist axial, shear forces,
and rotational moment (see Fig. 1(a)). The longitudinal continuous
model, however, considers the tunnel as a homogenous beam with re-
duction stiffness (see Fig. 1(b)). Compared with the beam-spring model,
the longitudinal continuous model is much simpler in computation,
making it widely used in soil-tunnel interaction analysis.

For the longitudinal continuous model, the previous studies com-
monly considered a tunnel as a continuous Euler-Bernoulli beam
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(Bogaards and Bakker, 1999; Huang et al., 2012, 2015; Talmon and
Bezuijen, 2013 Cheng et al, 2017b), which considered the longitudinal
deformation as a pure bending deformation with opening of the joints.
However, it is widely observed that shearing dislocation between rings
occurs during long-term operation of shield tunnels (Wang, 2009; Shen
et al., 2014; Wu et al., 2015). Fig. 2 shows the structural deformation of
a shield-driven water pipeline in Shanghai, China. As shown in Fig. 2,
the joint deformation includes both opening of joint and dislocation
between rings. Such deformation reflects a flexure deformation under
bending moment, and a shear deformation in longitudinal direction.
The traditional Euler-Bernoulli model only accounts for flexural de-
formation under bending and fails to capture the shearing-induced
dislocation between rings. A soil-tunnel interaction analysis based on
this structural model will give inaccurate results. Wu et al. (2015)
proposed a Timoshenko beam simplified model (TBSM), in which the
tunnel is simplified as a continuous Timoshenko beam with equivalent
flexure stiffness (EI)eq and shear stiffness (κGA)eq. TBSM presents the
deformation behavior of shearing dislocation reasonably well. How-
ever, Wu et al. (2015) did not provide the analysis method for soil-
tunnel interaction, which limits the application of TBSM.

There have been many constitutive models that attempt to simulate
the actual behavior of foundation soils. However, these models are
difficult to use for analytical analysis of structure/soil interaction pro-
blems due to the complex calculations involved. Therefore, some simple
elastic foundation models, such as Winkler model and two-parameter
models, continue to be widely used (Han and Frost, 2000; Yin, 2000a,b;
Li et al., 2016). The Winkler model is the simplest representation of a
foundation response. It idealizes the foundation to consist of closely

spaced independent springs (Winkler, 1867). The shortcoming of this
model is that it does not account for the shear strains in the ground. To
address this shortcoming, some two-parameter models that are capable
of considering the interaction among the discrete springs have been
proposed, such as Vlasov model, Hetenyi model, Pasternak model
(Vlasov and Leontev, 1966; Hetenyi, 1946; Pasternak, 1954). These
models are therefore expected to better capture the soil response via
selection of appropriate soil parameters (Jin et al., 2016, 2017; Yin
et al., 2018).

This paper aims to establish a soil-tunnel interaction model by
combining the TBSM proposed by Wu et al. (2015) with the Vlasov
foundation model. A closed-form solution of a shield tunnel on Vlasov
foundation subjected to arbitrary pressure loading will be derived. With
the proposed model, the effect of the equivalent shear stiffness, the
location of load application, and the rotational stiffness of the joint
between tunnel and station on the longitudinal behavior of the tunnel
structure are discussed.

2. Brief introduction of TBSM

2.1. Shearing-dislocation deformation of shield tunnels

Fig. 3 plots the modes of longitudinal deformation of a shield
tunnel. The lining is a composite structure consisting of segmental rings
and circumferential joints. Since the joints have a lower stiffness than
the segmental rings, joint deformation is the main element causing
longitudinal deformation. In view of different joint deformation types,
longitudinal deformation can be identified as following two modes: i)

(a) 

(b) 

foundation

jointsegmental ring

tunnel
ls

lb

Note: ls=length of the segmental ring lb=length of the connecting bolt
foundation

Fig. 1. Longitudinal structural model: (a) beam-spring model; (b) longitudinal continuous model.

Opening of joint

Disloction between rings

Fig.2. Longitudinal deformation of a shield-driven water pipeline in Shanghai (recreated based on the data from Liao et al., 2008).

H.-N. Wu et al. Tunnelling and Underground Space Technology 78 (2018) 168–177

169



bending mode and ii) dislocation mode. In the bending mode, rings
rotate around the center of deformation curve. In the dislocation mode,
differential settlement of the tunnel is an accumulation of the disloca-
tion between rings. The flexural deformation of the tunnel inevitably
exists whereas the shear stiffness of the circumferential joints is rela-
tively small, which makes the shear deformation of the whole tunnel to
become a significant component of the longitudinal deformation.

2.2. Timoshenko beam simplified model

Fig. 4 shows the schematic illustration of the TBSM proposed by Wu
et al. (2015). The tunnel is consisted of a series of segmental rings and
joints between them in the longitudinal direction. Taking one ring and
the adjacent joint as one calculation unit, the tunnel can be considered
as a continuous Timoshenko beam that is made up of a series of beam

elements of ring-joint units. Uniform stiffness was adopted for TBSM
along the tunnel axis. Since the joint is composed of a series of bolts, it
leads to an apparent stiffness reduction along the tunnel, which should
be taken into account in the model.

For the TBSM, governing equations for a tunnel model can be ob-
tained based on the Timoshenko theory (Timoshenko, 1921):

= − = − =Q dM
dx

dQ
dx

q d M
dx

q, 0
2

2 (1a,b)

= − = − = − +φ dw
dx

γ k
dφ
dx

d w
dx

dγ
dx

, c
2

2 (2a,b)

= =M EI k Q κGA γ( ) , ( )eq c eq (3a,b)

where Q=shear force, M=bending moment, q=applied trans-
verse load, w=deflection of the neutral axis of the beam, φ=rotation
angle of the cross section, kc= curvature of the neutral axis;
(EI)eq=equivalent flexural stiffness, in which E= Young's modulus,
I=area moment of inertia of the cross-section; (κGA)eq=equivalent
shear stiffness, in which G=shear modulus, A=cross sectional area,
κ= the coefficient of Timoshenko shear, depending on the geometry.
Normally, κ=1/2 for annular cross sections.

The stiffness reduction effect of the joints between rings was con-
sidered by using equivalent flexure stiffness (EI)eq and shear stiffness
(κGA)eq, which obey the following deformation equivalence hypothesis:
(i) under pure bending, the flexure deformation of the beam element
equal to the sum of the flexure deformation of ring and joint; (ii) under
pure shear force, the shear deformtion of the beam element equal to the
sum of the flexure deformation of ring and joint (Wu et al., 2015). That
is,

= +θ θ θj s (4a)

= +u u uj s (4b)

where, θ= the rotation angles displacement of the ring-joint unit;
θj=rotation angles of the joint; θs=rotation angles of the segment
ring; u= the equivalent shear displacement of the ring-joint unit;
uj=the shear displacement of the joint; us=the shear displacement of
the segmental ring.

According to the coordination system and equilibrium equation, the
rotation angles of the section within and beyond the influence range of
the joint can be derived, which are expressed as (Liao et al., 2008):

=θ λl M
K E Ij

b

f s s (5a)

R

δ
O

R

θ

O

(a) Bending mode

(b) Dislocation mode
Fig. 3. Longitudinal deformation modes of shield tunnel (after Wu et al., 2015).
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Fig. 4. Illustration of Timoshenko beam simplified model (after Wu et al., 2015).
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= −θ M l λl
E I

( )
s

s b

s s (5b)

where, ls= length of the segmental ring; lb= length of the con-
necting bolt; Es=Young’s modulus of segment concrete; Is=area
moment of inertia of the cross-section; Kf is the coefficient of rotational
stiffness of circumferential joint, which is calculated by the following
equation: = + +Kf

ψ
ψ ψ π ψ

cos
cos ( / 2) sin

3
,in which ψ= location of neutral axis

angle (Liao et al., 2008); λ= influence factor of circumferential joints;
η is the reduction factor of flexural stiffness. Substituting Eqs. (5a) and
(5b) into Eq. (4a), yields (Liao et al., 2008):

=
− +

=EI E I
K l

K l λl λl
ηE I( ) ·

( )eq s s
f s

f s b b
s s

(6)

where, η is the reduction factor of flexural stiffness.
Following the methodology of Liao et al. (2008), Wu et al. (2015)

derived the equivalent shear stiffness based on Eq. (4b). The shear
displacement of the joint and segmental ring can be expressed using the
following formulas.

= =u l γ l Q
nκ G A

tan tanj b b b
b b b (7a)

= − = −u l l γ l l Q
κ G A

( ) tan ( ) tans s b s s b
s s s (7b)

where, γb= shear distortion of bolt; Gb=shear modulus of bolt;
Ab=cross sectional area of bolt; κb=Timoshenko shear coefficient of
bolt, and for a circular section, κb=0.9; γs = shear distortion of seg-
mental ring; Gs=Shear modulus of segmental ring; As=cross sectional
area of segmental ring; κs=Timoshenko shear coefficient of segmental
ring, and for an annular cross section, κs=0.5. Substituting Eqs. (7a)
and (7b) into Eq. (4b), the equivalent shear stiffness (κGA)eq can be
expressed as follows:

=
+ −κGA ξ l( )eq
s

l
nκ G A

l l
κ G A

b
b b b

s b
s s s (8)

where, ξ is a modification factor introduced here to consider the in-
fluences of the friction between segments, the tongue and groove joint,
and the sealing gasket.

Based on the geometrical relationship, Wu et al. (2015) derived the
maximum opening of the joint Δ, which is located on the edge of the
tension side, and the dislocation between the segmental rings, δ:

= + = +θ r r ψ Mλl
E I ζ

r r ψΔ ( sin ) · 1 ·( sin )j
b

s s (9)

= =δ l γ l Q
κGA

tan tan
( )s s

eq (10)

where r=outer radius of the segmental ring, γ=shear distortion of
the tunnel.

3. Soil-tunnel modelling based on TBSM

In this paper, soil response to tunnel with applied load is simulated
by a Vlasov foundation. By combining the Timoshenko beam model of
tunnel with Vlasov foundation theory, the interaction between soil and
tunnel can be analyzed. Fig. 5(a) shows the proposed soil-tunnel in-
teraction model, which is an equivalent Timoshenko beam on a Vlasov
foundation. Fig. 5(b) shows two displacement parameters of tunnel
deformation, settlement w and rotation angle φ, and the defined posi-
tive direction. Fig. 5(c) shows a tunnel element supported by soil
springs with the positive direction of the forces on the element. A Ti-
moshenko beam on the Winkler foundation has been analyzed by Han
and Frost (2000) and Yin (2000a, 2000b). This paper extends his
method to the analysis of Timoshenko beam on Vlasov foundation, and
different boundary conditions are considered.

The vertical force equilibrium of the Timoshenko beam element in
Fig. 5(c) leads to (Vlasov and Leontev, 1966):

= − ∂
∂

−dQ
dx

k w t w
x

q2 ( )e e
2

2 (11)

where w=vertical displacement of tunnel; q=function of pressure
acting on the tunnel in the longitudinal direction. ∫= −q x f x y dy( ) ( , )r

r ,
in f(x,y)= function of pressure acting on the tunnel; ke=equivalent
compression coefficient of Vlasov foundation, te=equivalent shear
coefficient of Vlasov foundation; ke= kb, te= tb, in which, k=com-
pression modulus of Vlasov foundation, t=shear modulus of Vlasov
foundation, b=outer diamter of tunnel.

According to Eqs. (1a), (2a), (2b), (3a), (3b), the following equation
can be obtained:

− + =D
d φ
dx

Cφ C dw
dx

0
2

2 (12)

where D=(EI)eq, C=(κGA)eq. Substituting Eqs. (2a) and (3b) into Eq.
(12), the following equation can be obtained:

− + − ∂
∂

=C
dφ
dx

C d w
dx

k w t w
x

q2 ( )e e
2

2

2

2 (13)

Eqs. (12) and (13) can be reduced to a single fourth-order ordinary
differential equation of w:

+ − + + = −D Dt
C

d w
dx

k D
C

t d w
dx

k w q D
C

d q
dx

( 2 ) ( 2 )
( )e e

e e
4

4

2

2

2

2 (14)

The external pressure q(x) can be expressed by a function of x
(0 < x < L), using the Fourier cosine series as follows:

∑= +
=

=∞

q x A A nπ
L

x( ) cos
n

n

n0
1 (15)

where L= length of the calculation region, ∫=A q x dx( )L
L

0
1

0 ,

∫= ( )A f x dx( ) cosn L
L nπx

L
2

0 .
The general solution to the vertical displacement function, w, can be

written as:

∑

= + + + +

+

−

=

=∞

w e c βx c βx e c βx c βx A
k

a nπ
L

x

( cos sin ) ( cos sin )

cos

αx αx

e

n

n

n

1 2 3 4
0

1 (16)

where c1, c2, c3, and c4 are constants which can be determined based
on the boundary conditions; α, β, and an are as follows:

=
+

+
+

+
α k

D

t

D4( )

2

4( )
e

Dt
C

k D
C e

Dt
C

2 2e

e

e
(17a)

=
+

−
+

+
β k

D

t

D4( )

2

4( )
e

Dt
C

k D
C e

Dt
C

2 2e

e

e
(17b)

=
+

+ + + +
a

A

D t k

[1 ( ) ]

( )( ) ( 2 )( )
n

n
nπ
L

D
C

Dt
C

nπ
L

k D
C e

nπ
L e

2

2 4 2e e
(17c)

The above equation holds under the condition
>

+

+
+

k

D

k D t C
DC Dt4( )

2
4( 2 )

e
Dte
C

e e
e2 ; if ⩽

+

+
+

k

D

k D t C
DC Dt4( )

2
4( 2 )

e
Dte
C

e e
e2 , then β in the equa-

tion should be substituted by =β iβ.
The rotation angle function of the tunnel φ is expressed as

= + + +

+ ∑ ⎡
⎣

+ − − ⎤
⎦

−

−

=

=∞ { }( )( )( ) ( )
φ e c βx c βx e c βx c βx

a A x

( cos sin ) ( cos sin )

1 1 sin

αx αx

n

n
D
C

t
C

nπ
L

Dk
C

nπ
L n

nπD
LC n

nπ
L

5 6 7 8

1

2 3e e
2 2

(18)

where c5, c6, c7, and c8 are constants that can be calculated from c1,
c2, c3, and c4.
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The rate of the rotation angle, dφ
dx
, is expressed as

= + + +

+ ∑ ⎡
⎣

− + − + ⎤
⎦

−

=
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Where
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If rate of the rotation angle is known, the bending moment, M, can
be obtained using Eq. (2b) and Eq. (3a).
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The shear force, Q, is expressed as

= − = +
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where,
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The constants c1, c2, c3, and c4 can be determined based on the
boundary conditions. The boundary conditions can be different when
location of the external force changes. Fig. 6 shows the boundary
conditions for different location of the load application.

(a) Boundary condition I
As shown in Fig. 6(a), if the external force is added upon the middle

part of the tunnel section, there will be no displacements and rotations
in the two side of the model provided that the calculation length, L, is
long enough to cover the influence range of the force. That is,

y
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dx2
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z z dx

M+dMM

q(x)dx

Q Q+dQ

w O
O(b) (c)
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Fig. 5. Timoshenko beam model of tunnel on Winkler foundation: (a) schematic illustration of model; (b) displacement parameters and their positive directions; (c)
beam element and forces.
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= = = == = = =w φ w φ| 0; | 0; | 0; | 0x x x L x L0 0 (25a-b)

Using Eq. (16) for w and (18) for φ, we have
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+ + + =− −c e βL c e βL c e βL c e βL Rcos sin cos sinαL αL αL αL
1 2 3 4 3 (26c)

where = − − ∑
=

=∞
R a nπcosA

k b
n

n

n3
1s

0

⎧

⎨
⎪

⎩⎪

⎡
⎣

− + + − ⎤
⎦

+ ⎡
⎣

− − + + − + ⎤
⎦

⎫

⎬
⎪

⎭⎪

+
⎧

⎨
⎪

⎩⎪

⎡
⎣

− + + − ⎤
⎦

+ ⎡
⎣

− + + − ⎤
⎦

⎫

⎬
⎪

⎭⎪

+
⎧

⎨
⎪

⎩⎪

⎡
⎣

− − + + − + ⎤
⎦

+ ⎡
⎣

− − + + − + ⎤
⎦

⎫

⎬
⎪

⎭⎪

+
⎧

⎨
⎪

⎩⎪

⎡
⎣

− + + − ⎤
⎦

+ ⎡
⎣

− − + + − + ⎤
⎦

⎫

⎬
⎪

⎭⎪

=

−

−

−

−

( )
( )
( )
( )

( )
( )
( )
( )

( )
( )
( )
( )

( )
( )
( )
( )

c
e βL α α αβ

e βL β α β β

c
e βL β α β β

e βL α α αβ

c
e βL α α αβ

e βL β α β β

c
e βL β α β β

e βL α α αβ

R

cos 1 1 ( 3 )

sin 1 1 ( 3 )

cos 1 1 (3 )

sin 1 1 ( 3 )

cos 1 1 ( 3 )

sin 1 1 ( 3 )

cos 1 1 (3 )

sin 1 1 ( 3 )

αL Dk
C

D
C

t
C

αL Dk
C

D
C

t
C

αL Dk
C

D
C

t
C

αL Dk
C

D
C

t
C

αL Dk
C

D
C

t
C

αL Dk
C

D
C

t
C

αL Dk
C

D
C

t
C

αL Dk
C

D
C

t
C

1

2 3 2

2 2 3

2

2 2 3

2 3 2

3

2 3 2

2 2 3

4

2 2 3

2 3 2

4

e e

e e

e e

e e

e e

e e

e e

e e

2

2

2

2

2

2

2

2

(26d)
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Eqs. (26) can be written in a matrix form

=M c R[ ]{ } { } (27)

where, = −c c c c c{ } [ , , , ]1 2 3 4
1, = −R R R R{ } [ , 0, , ]1 3 4

1. The coefficient Mij
= ⋯ = ⋯i j( 1 4, 1 4)in M[ ]can be found from Eq. (24).

= −c M R{ } [ ] { }1 (28)

Once c1, c2, c3, and c4 are determined, w and φ can be calculated.
Then, the internal forces of the tunnel can be obtained from Eqs. (22)
and (23), and the opening of the joint and dislocation between rings can

be calculated by Eqs. (9) and (10).
(b) Boundary condition II
If the external force is close to the station, a fixed boundary con-

dition would be inapplicable at the joint between station and tunnel.
Generally, the joint between station and tunnel in shield tunnels use a
flexible connection which allows the tunnel to rotate to a certain degree
(Wu et al., 2013). In this case, the boundary condition is shown in
Fig. 6(b). Assume that the bending moment produced to resist rotation
of the tunnel ′M , is linearly related to the rotation angle ′φ , that is,

′ = ′M R φT , where RT is rotational stiffness of the joint. Then the
boundary condition in the two side of the model can be expressed as
follows, provided that the calculation length, L, is long enough to cover
the influence range of the force.

= = = == = = =w M R φ w φ| 0; | ; | 0; | 0x x T x L x L0 0 (29a-d)

Substituting Eqs. (18) and (22) into the boundary condition in Eq.
(26b), yields
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where, = ∑ ⎡
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Eqs. (26a), (30), (26c), (26d) can be written into the matrix form in
Eq. (27), and the constants c1, c2, c3, and c4 for boundary condition II
can be determined.

4. Case study and discussion

4.1. Formulation of the problem

To validate the effectiveness of the proposed model, a shield tunnel
section in Shanghai Metro subjected to an external force transferred
from surcharge load on the ground surface was analyzed. Fig. 7 shows
an illustration of a shield tunnel subjected to surcharge load on the
ground surface. The ground surface above the tunnel is subjected to a
surcharge of 10m×10m, and the load pressure, P, is 150 kPa. The
length of the tunnel section between two stations is 1000m. The buried
depth of the tunnel is about 6m. Table 1 shows the basic parameters of
the segments and bolts of metro tunnels in Shanghai, which are ob-
tained from Shen et al. (2014) and Liao et al. (2008). The shear

Station

M'
Tunnel

Tunnel

(a) Boundary condition I

q

q

'

(b) Boundary condition II

Fig. 6. Boundary conditions for different location of load application.

Fig. 7. Case study of a shield tunnel subjected to surcharge load on the ground
surface.
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modulus is calculated based on the following equation: Gs=0.5E/
(1+ v). The metro tunnel has outer diameter of 6.2m and inner dia-
meter of 5.5 m. It consists of six precast reinforced concrete segments to
form a ring. Each segmental ring is 1m in length. The soil profile at the
site is as follows. The upper deposit is a crust layer with a thickness of
3m. Next is the typical first soft clay layer of Shanghai, which consists
of a 3m-thick, mucky, silty, clay layer and a 9.5 m-thick, mucky, clay
layer. Under that is the second soft clay layer with a thickness of 20m,
and it is slightly stiffer than the first clay layer. The physical and me-
chanical properties of the soils can refer to the previous publications of
authors (Shen and Xu, 2011; Shen et al., 2013, 2014; Ye et al., 2015).
The Shanghai clay has the characteristics of high compressibility and
high sensitivity with strong creep behavior (Yin et al., 2010, 2011; Yin
and Chang, 2013). For the mucky clay layer, the elastic modulus E is
1.3 MPa and the Poisson's ratio v is 0.35; for the underlying clay layer,
the elastic modulus E is 2.3 MPa and the Poisson's ratio v is 0.33
(SURCTC, 2012).

4.2. Analysis method

4.2.1. Foundation parameters
The compression modulus k and the shear modulus t of Vlasov

foundation can be calculated based on the Elastic modulus and the
Poisson's ratio of the soil (Vlasov and Leontev, 1966).
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where, =
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s
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v0 1 , Es=Elastic modulus of soil,
v=Poisson's ratio of soil. h(z)= displacement variation function in
vertical direction, which is expressed as:
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According to Eqs. (31)-(33), it is worked out that the compression
modulus of Vlasov foundation k=5344.4 kN/m3, and the shear mod-
ulus of Vlasov foundation t=23485.6 kN/m3.

4.2.2. Load acting upon the tunnel
The pressure load acting upon the tunnel can be calculated using the

method proposed by Boussinesq (1885). If the foundation is constructed
in the location of 500m from the studying point, the calculated pres-
sure load is shown in Fig. 8(a). The pressure load is a function of two
variables, f(x, y). Integrating the function over y direction from −3.1m
to 3.1m, the pressure load along the longitudinal direction, q(x), can be
obtained, as shown in Fig. 8(b). The q(x) can be expressed by a Gaus-
sian function:

= − −( )q x e( ) 490.7
x 500
7.033

2

(34)

It can be further expressed in a Fourier series as in Eq. (11).

4.2.3. Analysis cases
This study considers different locations of independent foundation

above the tunnel: (i) on the middle part of the tunnel section (500m
from the starting point); (ii) near the station (10m, 15m, 20m, 30m,
40m from the starting point). For the former case, the fixed boundary
conditions shown in Eq. (25) can be adopted if the calculation length is
200m. For the latter case, the boundary conditions shown in Eq. 26 can
be adopted if the calculation range is set from the starting point to
200m away.

According to Liao et al. (2008), the reduction factor for flexural
stiffness of metro tunnels in Shanghai is η=1/7. This equates to a
flexural stiffness of the tunnel (EI)eq at 1.361×108 kNm2. Research on
the equivalent shear stiffness of shield tunnels of Shanghai is com-
paratively rare. According to Eq. (5), if the modified factor ξ=1, the
equivalent shear stiffness (κGA)eq is 2.08× 106 kN. In this study, a
parameter study for the equivalent shear stiffness will be conducted,
with different values for the modified factor ξ=2, 1, 0.5, 0.2, 0.1. For
comparison, both the proposed Timoshenko beam model and the tra-
ditional Euler-Bernoulli beam model on a Vlasov foundation was
adopted.

The rotational stiffness of the joint between station and tunnel, RT,
depends on the construction technology. In engineering practices, dif-
ferent technologies have been applied, e.g. rigid connection by welding
steel plate embedded in the segmental lining onto steel shaft ring;
flexible connection by riveting the segmental lining on a steel plate,
which allows the tunnel to rotate to a certain degree, and so on.
Moreover, geohazards is easy to happen during shield tunneling in this
ground (Lyu et al., 2018a,b) so that the soft soil outside station shaft is
general need to be improved using jet grouting during underground
construction (Shen et al., 2017). All of these factors affect the value of

Table 1
Parameters of segments and bolts used in metro tunnels in Shanghai.

Segmental rings Bolts

Outer diameter
(mm)

6200 Number of circumferental
bolts

12

Inner diameter (mm) 5500 Number of longitudinal
bolts

17

Thickness (mm) 350 Diameter 30
Length (mm) 1000 Length (mm) 400
Young’s modulus

(kPa)
3.45× 107 Young’s modulus (kPa) 2.06× 108

Shear modulus, Gs 1.4375×107 Shear modulus, Gs 7.923× 107

Poisson’s ratio, v 0.2 Poisson’s ratio, v 0.3

Distance in TD(m)

Note: LD=Longitudinal direction; 
TD= Transverse direction
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Fig. 8. Distribution of additional pressure loading on shield tunnel: (a) in both
transverse and longitudinal direction; (b) in longitudinal direction.
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rotational stiffness. However, there is no research on the calculation of
rotational stiffness found. In this study, a parameter study on the ro-
tational stiffness was conducted, by assuming RT=1.0× 106 kNm/
rad, 1.0× 105 kNm/rad, 1.0× 104 kNm/rad, and the effect of RT on
the tunnel behavior was investigated. In the following discussion, the
rotation obtained from the assumption of RT is within the allowance of
the current technology. However, further investigation on the rotation
stiffness is necessary in the future.

4.3. Results and discussion

4.3.1. Effect of equivalent shear stiffness
When the independent foundation is constructed in the middle of

the tunnel section (500m from the starting point), the calculated tunnel
deformation considering different modified factor of equivalent shear
stiffness is shown in Fig. 9. Typical aspects of tunnel deformation, such
as settlement, maximum opening of joints, and dislocation between
rings are investigated. As shown in Fig. 9(a), the tunnel settlement
trough obtained from the Timoshenko beam model was greater and
narrower than that calculated by the Euler-Bernoulli model. This is
because the Timoshenko model allows shear deformation of the tunnel,
which makes the load-bearing ability of the tunnel smaller than that of
the Euler-Bernoulli model. With a smaller load-bearing ability, the ef-
fect of an acting load tends to limit in the loaded region. When the
modified factor ξ=1, the maximum settlement of the tunnel is 8 mm,
and the influencing diameter, within which the displacement of tunnel
is less than 0.1mm, is about 45m.

Despite a smaller settlement occurring, the Euler-Bernoulli model
predicts a greater opening of joints than the Timoshenko model, as
shown in Fig. 9(b); and there is no dislocation between rings for Euler-
Bernoulli beam model, as depicted in Fig. 9(c). For Timoshenko model,

with the decrease of the equivalent shear stiffness, the depth of the
settlement trough increases, the opening of the joint decreases, and the
dislocation between rings increases. If the shear stiffness is great en-
ough, the Timoshenko model will degenerate into an Euler-Bernoulli
model. When the modified factor ξ=1, the maximum opening of the
joint is 0.1 and the dislocation is 0.2 mm. If great settlement occurred,
failure of the bolts in circumferential joints can be caused, which will
greatly reduce the shear stiffness of the joint. The shearing dislocation
will become the main deformation mode of the tunnel.

Fig. 10(a) and (b) compares the moment and the shear force of a
tunnel calculated using the proposed model with those calculated using
the traditional Euler model. It can be found that Timoshenko model
predicts a smaller moment and force than the Euler model although the
magnitude of tunnel settlement is greater than that of Euler model. The
results indicate that the Euler-Bernoulli beam model underestimates the
tunnel deformation and overestimates the internal forces. With the
decrease in the shear stiffness, the internal force decreases gradually,
despite of a greater deformation is caused.

4.3.2. Effect of location of load application
Assume the surcharge load is acted close to the station, with a dis-

tance Lf equating to 10m, 15m, 20m, 30m, 40m, respectively. The
rotational stiffness of the joint between station and tunnel, RT, is as-
sumed as 1.0×106 kNm/rad, and the equivalent shear stiffness,
(κGA)eq, is assumed as 2.08× 106 kN. Since the distance between the
foundation and the station is less than the influencing diameter of 45m,
the settlement behavior of the tunnel should be calculated using
boundary condition II. Fig. 11 shows the calculated deformation of the
tunnel for different cases. It can be seen that, with the decrease of the
distance between the load and the station, there is a slightly decrease of
the maximum settlement of the tunnel. However, the maximum dis-
location between segmental rings increases, which leads to a higher
possibility of water leakage. Fig. 12 shows the calculated internal forces
of the tunnel for different cases. It can be seen that there is no obvious
change on the maximum bending moment, however, the shear force
increases significantly with the decrease of distance between the load
and the station.

4.3.3. Effect of the rotational stiffness of the joint between tunnel and
station

Assume the independent foundation is located at 20m from the
station, and the equivalent shear stiffness, (κGA)eq, of the tunnel is
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Fig. 9. Calculated deformation of the tunnel considering different equivalent
shear stiffness: (a) settlement; (b) opening of joints; (c) dislocation between
rings.
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Fig. 10. Calculated internal forces of the tunnel considering different equiva-
lent shear stiffness: (a) bending moment; (b) shear force.
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2.08×106 kN. Considering different rotational stiffness of the joint
between tunnel and station (RT=1.0×106, 1.0× 105,
1.0× 104 kN·m/rad), the calculated deformation and internal forces of
the tunnel is shown in Figs. 13 and 14. It can be seen that, with the
decrease of RT, the rotation angle of joint between tunnel and station
increases gradually, and the maximum settlement of the tunnel in-
creases slightly. A stiffer joint between tunnel and station will lead to a
greater internal forces locally .

5. Conclusions

This paper presents the analytical model of soil-tunnel interaction
for shield tunnels with consideration of shearing dislocation between
segmental rings. The following conclusions can be drawn.

(a) The interaction between shield tunnel and soil can be simplified as
a Timoshenko beam simplified model (TBSM) on Vlasov foundation
with equivalent flexure stiffness (EI)eq and shear stiffness (κGA)eq.
The model considers two boundary conditions: (i) fix boundary
condition; (ii) allowing rotation in the boundary, therefore, can
analyze the behavior of tunnel subjected to a load either in the
middle of the tunnel section or close to the station in an appropriate
way.

(b) Compared with TBSM on Vlasov foundation, the traditional model
of Euler-Bernoulli beam predicts a smaller and wider settlement
trough of the tunnel with significantly higher internal forces. That
is, the Euler-Bernoulli beam model underestimates the tunnel de-
formation and overestimates the internal forces. With the decrease
of shear stiffness, smaller rotation angles of the segmental rings
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Fig. 11. Calculated deformation of the tunnel considering different location of
load: (a) settlement; (b) opening of joints; (c) dislocation between rings.
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Fig. 12. Calculated internal forces of the tunnel considering different location
of load: (a) bending moment; (b) shear force.
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Fig. 13. Calculated deformation of the tunnel with different rotation stiffness at
the joint between station and tunnel: (a) settlement; (b) rotation angle.
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Fig. 14. Calculated internal forces of the tunnel with different rotation stiffness
at the joint between station and tunnel: (a) bending moment; (b) shear force.
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with smaller opening of joints and greater dislocation between rings
are predicted.

(c) If the applied load is close to the station, with the decrease of the
distance between the load and the station, there is a slightly de-
crease of the maximum settlement of the tunnel, but the maximum
internal forces and the maximum joint deformation increases,
which leads to a higher possibility of water leakage. A stiffer joint
between tunnel and station will lead to a smaller maximum set-
tlement of the tunnel, but cause a greater internal forces locally.
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