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Abstract: Small-strain shear modulus (G0) is a fundamental property required in dynamic analyses. For sandy soils, G0 may be affected
strongly by particle characteristics such as uniformity coefficient (Cu), mean particle size (d50), fines content (FC), and particle shape. Based
on an extensive experimental study of the mechanical behavior of coral sands, this paper proposes a new formula for predicting G0 for sandy
soils with various Cu, d50, FC, and particle shapes. A notable feature of the new formula is the use of the extreme void ratios (maximum void
ratio emax and minimum void ratio emin) as the indexes, which were shown to be able to account for the effects of the various factors in a
simple yet collective manner. Power-law correlations were established between the minimum small-strain shear modulus G0min and emax as
well as between the maximum small-strain shear modulus G0max and emin. The wide applicability of this formula was validated further using
extensive data from the literature from resonant column, bender element, and torsional shear tests on siliceous, calcareous, and coral sandy
soils. DOI: 10.1061/JGGEFK.GTENG-10913. © 2022 American Society of Civil Engineers.
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Introduction

The behavior of soils even at small strain levels exhibits nonlinear-
ity. The shear modulus below strain levels of about 0.001% usually
is termed the small strain shear modulus G0 (Atkinson and Sallfors
1991; Lo Presti 1995; Clayton and Heymann 2001; Clayton 2011).
The G0 and the strain-dependent shear modulus reduction G=G0

and damping ratio λ curves are key information required in various
geotechnical applications such as earthquake site response analysis
and dynamic soil–structure interaction problems (e.g., Seed and
Idriss 1970; Kokusho 1980; Rollins et al. 1998, 2020; Yang and
Yan 2009; Senetakis et al. 2012, 2013; Yang and Gu 2013;
Oztoprak and Bolton 2013; Chen et al. 2016; Senetakis and He
2017; Chen et al. 2019b, 2021c, 2022). Extensive research has
measured the G0 of sandy soils in laboratory measurements [cyclic
triaxial (CTX) tests, resonant column (RC) tests, bender element
(BE) tests, and so forth] and in situ shear wave velocity (Vs) mea-
surements via the fundamental relation G0 ¼ ρV2

s , in which ρ is the
soil mass density. The G0 of sandy soils is governed by the soil

material properties {e.g., particle-size distribution features [uniform-
ity coefficient Cu, mean particle size d50, and fines content (FC)],
particle shape, fabric, and mineralogy} and its state (e.g., global void
ratio e or relative density Dr, mean effective confining stress σ 0

c or
vertical effective stress σ 0

v) (e.g., Hardin and Richart 1963; Hardin
and Black 1966; Seed and Idriss 1970; Seed et al. 1986; Rollins
et al. 1998; Cubrinovski and Ishihara 2002; Menq 2003; Cho et al.
2006; Bui 2009; Wichtmann and Triantafyllidis 2009; Yilmaz and
Mollamahmutoglu 2009; Clayton 2011; Senetakis et al. 2012,
2013; Gu et al. 2013; Altuhafi et al. 2016; Payan et al. 2016;
Sarkar et al. 2019; Chen et al. 2019b, 2020). The influence of loading
rate on the G0 of a granular soil is negligible (Matesic and Vucetic
2003; Clayton 2011; Chen et al. 2019b). The uncertainty of in situ Vs
tests can lead to significant misinterpretation in the top 30 m, in
which the average bias (ratio of standard deviation to mean value)
of in situ methods appears to be 4%–14% within each method and
2.5%–12.6% between methods (Darvasi 2021). Given the difficulty
of undisturbed sampling and the sophistication of cyclic laboratory
element tests, along with the fact that in situ measurements of Vs are
costly and time consuming, many researchers have attempted to
establish empirical equations to predict G0 (or Vs) based on the
material properties and the state of the soil.

It is well recognized that the physical state parameters e (or Dr)
and σ 0

c (or σ 0
v) are two very important factors governing the G0 of

sandy soils. Hardin’s equation is one of the most popular empirical
formulas for predicting G0 of sandy and gravelly soils (Hardin and
Richart 1963; Hardin and Black 1966)

G0 ¼ AFðeÞ
�
σ 0
c

Pa

�
n

ð1Þ

where Pa = reference stress, usually atmosphere pressure
(i.e., 100 kPa); A = material constant linked to soil type; and
n = stress power, which strongly depends on the material properties
(Ishihara 1996; Qadimi and Coop 2007; Gu and Yang 2013; Yang
and Liu 2016; Chen et al. 2019b), and generally is in the range
0.35–0.7, and a value of 0.5 commonly is used for siliceous sands
(Bui 2009; Clayton 2011), in which parameters A and n are linked
to the particle gradation of sandy soil via Cu and d50 (Hardin and
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Richart 1963; Iwasaki and Tatsuoka 1977; Menq 2003; Cho et al.
2006; Wichtmann and Triantafyllidis 2009; Senetakis et al. 2012;
Chen et al. 2019b); and FðeÞ is a function of e and is expressed in
different forms as follows:

Hardin and Black (1966) form

FðeÞ ¼ ða − eÞ2
1þ e

ð2Þ

Bellotti et al. (1996) and Menq (2003) form

FðeÞ ¼ e−b ð3Þ
where a is a constant that depends mainly on particle shape and
size, where a ¼ 2.17 for rounded particles and a ¼ 2.97 for angu-
lar particles; and b is a fitting constant between 1.1 and 1.5, with a
mean value of 1.3 (Altuhafi et al. 2016). Rahman et al. (2014) pro-
posed a modified version of theG0 equation by replacing ewith the
equivalent skeleton void ratio e� in Hardin’s equation. Of more in-
terest is the proposal by Yang and Liu (2016) which characterizes
G0 using the state parameter ψ instead of e and thus allows for a
unified quantification for both clean and silty sands in the frame-
work of critical state soil mechanics (Yang et al. 2018).

Another generally accepted formula for G0 is expressed as a
function of Dr and σ 0

c (Seed and Idriss 1970)

G0 ¼ ADK2

�
σ 0
c

Pa

�
n

ð4Þ

where n ¼ 0.5; and AD and K2 are material constants. Seed et al.
(1986) showed that AD ¼ 218.8 MPa, and K2 is a coefficient de-
pendent on Dr, ranging from 30 for loose sand to 75 for dense sand,
but theK2 values are quite scattered (Rollins et al. 1998); Wichtmann
and Triantafyllidis (2009) showed that AD ¼ 17,700 MPa, n ¼ 0.48,
and K2 is a function of Dr for sandy soils

K2 ¼
1þDr

ð17.3 −DrÞ2
ð5Þ

where Dr = decimal form. For convenience, the combination of
Eqs. (4) and (5) with the AD and n values proposed by Wichtmann
and Triantafyllidis (2009) is referred to as the updated Seed’s
equation.

Many researchers have observed that the particle-size distribu-
tion characteristics (Cu, d50, and FC) of a sand soil may have sig-
nificant effects on G0. Menq (2003) found that G0 increases with
Cu and d50 because e is associated closely with Cu. However, some
researchers found that G0 decreases with Cu and the influence of
d50 on G0 can be ignored (Wichtmann and Triantafyllidis 2009;
Senetakis et al. 2012; Yang and Gu 2013; Liu et al. 2016; Ha
Giang et al. 2017; Gu et al. 2017). Wichtmann and Triantafyllidis
(2009) stated that the proportion of contact force chains in nonun-
iformly composed material with larger Cu is smaller than those in
the uniformly composed material with lower Cu, which results in
the decrease of G0 with the increase of Cu. Yang and Gu (2013)
proposed a micromechanics-based explanation using the Hertz–
Mindlin contact law, suggesting that G0 is independent of particle
size. Gu et al. (2017) showed that G0 is independent of d50 and
it decreases with increasing Cu at the same e and σ 0

c. Moreover,
several researchers have shown that an increase of FC (below a
threshold fines content FCth) may result in a decrease of G0, and
the decreasing rate decreases as FC increases (e.g., Iwasaki and
Tatsuoka 1977; Salgado et al. 2000; Wichtmann et al. 2015;
Yang and Liu 2016; Shi et al. 2020). There may be interactions
between the effects of Cu, d50, and FC on the G0 value of sandy
soils (Chen et al. 2020). For a binary mixture, the FCth is defined as

the fines content for distinguishing the regime of fines in sand from
that of sand in fines. The G0 value of the mixture may be quantified
by the equivalent intergranular void ratio e� (Thevanayagam et al.
2002; Chen et al. 2020; Rahmani and Naeini 2020).

In the literature, several modified G0 equations have been
proposed to consider the effects of Cu, d50, and FC based on
Hardin’s equation (e.g., Menq 2003; Wichtmann and Triantafyllidis
2009; Payan et al. 2016; Ha Giang et al. 2017), and a more general
form is

G0 ¼ ½A1ðCuÞA2ðd50ÞA3ðFCÞ�e−½b1ðCuÞb2ðd50Þb3ðFCÞ�

×

�
σ 0
c

Pa

�½n1ðCuÞn2ðd50Þn3ðFCÞ� ð6Þ

This equation does not consider the coupled effects of the vari-
ous parameters, and it ignores the effect of particle shape. Cho et al.
(2006) found a profound dependency of parameters A and n in
Hardin’s equation on the particle shape. In recent years, there
has been increasing interest in the effect of particle shape on the
mechanical properties of sandy soils (e.g., Yang and Wei 2012;
Payan et al. 2016; Ha Giang et al. 2017; Chen et al. 2019b), and
a notable attempt to characterize the shape based on G0 was made
by Liu and Yang (2018). Payan et al. (2016) found that the influ-
ence of particle gradation and shape on parameters A and n in
Hardin’s equation are decoupled, and attempted to quantify the
influence of particle shape on G0.

For sandy soils with different particle gradations and shapes, the
extreme void ratios (maximum and minimum void ratios, denoted
emax and emin, respectively) are used widely to describe the loosest
and densest packing states, and they may reflect the inherent physi-
cal properties of these soils (Cubrinovski and Ishihara 1999, 2002;
Cho et al. 2006; Sarkar et al. 2019). The packing structure of sandy
soils is a fundamental factor governing the extreme void ratios
(Youd 1973; Åberg 1992, 1996; Cubrinovski and Ishihara 2002;
Menq 2003; Cho et al. 2006; Chang et al. 2017; Sarkar et al.
2019). Both emax and emin decrease significantly with the increase
of Cu and regularity R (or sphericity s) (Cho et al. 2006; Altuhafi
et al. 2016; Sarkar et al. 2019), but have no significant correlation
with d50 (Youd 1973; Sarkar et al. 2019). In addition, both emax and
emin significantly decrease with the increase of specific gravity Gs
and can be expressed as a function of Cu, R, and Gs (Sarkar et al.
2019). The extreme void ratios first decrease and then increase with
FC; the minimum values occur at FC = 20%–40%, and depends on
the particle-size disparity ratio of the binary mixture (Cubrinovski
and Ishihara 2002; Yilmaz and Mollamahmutoglu 2009; Chang
et al. 2016; Chen et al. 2020). Several researchers have used
(emax − emin) as an index to evaluate the liquefaction susceptibility
of sandy and gravelly soils (Yilmaz and Mollamahmutoglu 2009;
Chen et al. 2021a). Both emax and emin are intrinsic variables that
reflect comprehensively the physical properties of granular soils.
Thus, by introducing both emax and emin as indexes in the G0 pre-
diction equation, the various effects related to particle gradation,
shape, and mineralogy can be captured properly. This was exactly
the motivation of the present study.

Compared with siliceous sands, carbonate sediments with high
content of calcium carbonate (CaCO3) conventionally are referred
to as calcareous sand. Carbonate sediments are divided into three
categories: calcareous sand, with CaCO3 < 50%; siliceous car-
bonate sand, with CaCO3 ¼ 50%–90%; and carbonate sand, with
CaCO3 ≥ 90% (Flores Lopez et al. 2018). Carbonate sand, which
exists widely in coral reefs, mainly distributed in the area from
30° S to 30° N latitude, usually is called coral sand (Chen et al.
2021b, 2022; Ma et al. 2022). Coral sand particles have several
obvious features, such as a rough surface, angular and irregular
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shape, numerous intraparticle pores, low hardness, and fragileness
(Sharma and Ismail 2006; Brandes 2011; Salem et al. 2013; Rui
et al. 2020; Chen et al. 2021b, 2022; Cheng et al. 2022). There
is no particle breakage in the first 1% shear strain during ring shear-
ing of a coral sand under σ 0

v = 650–930 kPa (Coop et al. 2004). For
the coral sand used in this study, the results of undrained cyclic
triaxial tests showed that the values of the breakage index B in
the Hardin (1985) method were less than 0.01 at σ 0

c ¼ 300 kPa
and Dr ¼ 76% for axial strain (εa) levels up to 1% (Liang et al.
2020). Cheng et al. (2022) introduced a modified breakage index
B based on the methods of Hardin (1985) and Einav (2007) and
showed for a calcareous sand that the values of B are 0.013 at
Dr ¼ 55%, σ 0

c ¼ 300 kPa, and εa ¼ 4%. Therefore, no significant
particle breakage will occur for shear strains below 1% and σ 0

c less
than ∼300 kPa (i.e., the maximum values used in this study). Sev-
eral studies have shown that significant differences in G0 and in
G=G0 and λ over a range of strains exist between coral sands
and siliceous sands (Ha Giang et al. 2017; Morsy et al. 2019;
Liu et al. 2020; Rollins et al. 2020; Chen et al. 2022). Coral sand
has a higherG0 at the same e and σ 0

c (Ha Giang et al. 2017), a larger
n in Hardin’s equation (Morsy et al. 2019), a higher G=G0 at the
same shear strain, and a lower λ for shear strains between 0.01%
and 0.1% (Chen et al. 2022). However, little is known about the
effects of Cu, d50, FC, and particle morphology on the G0 value
of coral sands. In addition, Sandeep et al. (2021) found that the con-
tact stiffness between two particles plays an important role in the
stiffness–pressure relationship at very small to medium strains,
which affects the stiffness of sands. In this respect, the roughness
difference between coral sands and siliceous sands likely is a factor
affecting the differences ofG0,G=G0, and λ over a wide strain range.

Compared with laboratory tests (RC, BE, and CTX tests) and in
situ Vs tests, index property tests are simpler, more rapid, more
economical, and less uncertain (Chen et al. 2020). Thus it is desir-
able to characterize the G0 value of sandy soils using the index
properties. This paper presents results from a series of RC tests
of coral sandy soils to investigate their G0 values. The influence
of various index properties (i.e. Cu, d50, FC, emax, emin, and particle
shape) was analyzed. A new extreme void ratios–based formula is
proposed for predicting the G0 of coral sandy soils. Furthermore,
the applicability of this new formula was validated using data from
the literature for various siliceous, calcareous, and coral sandy
soils, covering a wide range of particle gradation and shape
parameters.

Testing Apparatus, Materials, and Program

Testing Apparatus and Principle

A RC test apparatus (GCTS Instruments, Tempe, Arizona) was
used in this research; it is a fixed-free type, i.e., the tested specimen
is fixed on the pedestal and free to rotate at the top (Fig. 1). The
details of the test apparatus were provided by Chen et al. (2019a).
Uniform sinusoidal torsional excitations with constant amplitude
are applied at the top of specimen over a wide frequency range via
the cap of the RC apparatus by the motor-driven system. The data
sampling system during the frequency sweeping can keep track
of the shear strain amplitude (γa) value of the tested specimen.
The theoretical background details of the RC test are provided
by GCTS (2014) and Cataño-Arango (2006). The value of G0

under the assumption of linear elastic material behavior is obtained
from a frequency response curve associated with the variation in γa
(Fig. 2). Thus, the resonant frequency (f1) of the first rotational
mode of the tested specimen can be measured using the sweeping

method. The Vs of the tested specimen can be determined using the
measured f1. Via the relationship G0 ¼ ρV2

s , the following expres-
sion is obtained:

G ¼ ρ

�
2πhf1
β

�
2

ð7Þ

where h = specimen height; and β = eigenvalue of vibration
frequency equation, which is determined as follows:

β tanðβÞ ¼ Is=It ð8Þ

where Is = polar mass moment of inertia of tested specimen; It =
polar mass moment of inertia of driving system; and It ¼ 8.80 ×
10−4 kg · m2 for the RC apparatus used herein.

Testing Material

The tested coral sandy soils were sampled from the coral reefs
in the Nansha and Xisha Islands, South China Sea. Fig. 3 shows
scanning electron microscope images of the Nansha and Xisha
coral sand particles. The Nansha coral sand particles were com-
posed of 55.5% aragonite, 41.5% high magnesian calcite, and 3.0%
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Fig. 1. Schematic of the resonant column test apparatus.
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Fig. 2. Measured frequency responses of a specimen.
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calcite, with specific gravity Gs ¼ 2.77. The Nansha coral sand
particles were coral debris with subangular to angular shapes,
which had rough surfaces and numerous intraparticle pores. The
particle sphericity s and roundness r, determined by visually com-
paring the shapes of ∼30 particles with the characterization chart
(Krumbein and Sloss 1963), were 0.31 and 0.57, respectively. Thus,
the particle regularity R½¼ ðrþ sÞ=2� was 0.44. The Xisha coral
sand particles were composed of 78.3% aragonite, 19.3% high
magnesian calcite, and 2.4% calcite, and contained a considerable
proportion of shell debris besides the coral debris. The material prop-
erties were Gs ¼ 2.81, r ¼ 0.19, s ¼ 0.33, and R ¼ 0.26. As a re-
sult, the Xisha coral sand soils had more rod- and flake-shaped
particles, and were more angular and irregular than the Nansha coral
sand soils.

Nineteen coral sandy soils with various particle gradations,
including 15 Nansha coral sandy soils and 4 Xisha coral sandy
soils, were tested in this study. Clean coral sand with particle sizes
ranging from 0.075 to 2 mm (Sand ID N-S0) and coral fines
(<0.075 mm) were sieved from the natural Nansha coral sandy soil.
Fig. 4 shows the particle gradation curves of the 19 coral sandy
soils and the pure coral fines, and Table 1 lists their index properties
determined following the ASTM standards. The 19 sandy soils
and the pure fines also were classified following the Unified Soil
Classification System (ASTM 2011) (Table 1).

The emax value was determined according to Method B of
ASTM D4254 (ASTM 2016b). The material was pluviated from
a funnel into a specific mold with zero dropping height to obtain
the loosest packing to determine the value of emax. The value of emin
was determined according to the improved procedure (Yamamuro
and Lade 1997) for Vibration method 2A of ASTM D4253 (ASTM
2016a). To minimize segregation, the coral sandy soil was placed
into the mold in 10 layers. Each layer was densified by static

compaction at the layer surface and gently tapping the outside
of the mold using a metal bar. The compaction was repeated until
the volume of the soil no longer decreased and then the emin value
was determined. The emax and emin values of each coral sandy soil
were tested several times until the relative errors were less than 2%.
Fig. 5 shows emax and emin plotted versus Cu, d50, and FC for the 19
coral sandy soils. The emax and emin values of the Xisha coral sandy
soils were higher than those of the Nansha coral sandy soils, and
both of them slightly decrease with Cu [Fig. 5(a)]. The influence of
d50 and FC on the emax and emin values of the Nansha coral sandy
soils were moderate or insignificant [Figs. 5(b and c)]. The emax and

Fig. 3. Scanning electron microscope images of (a) Nansha coral sand particles; and (b) Xisha coral sand particles.
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Fig. 4. Particle-size distribution curves of the tested coral sandy soils.

© ASCE 04022127-4 J. Geotech. Geoenviron. Eng.

 J. Geotech. Geoenviron. Eng., 2023, 149(2): 04022127 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
on

 0
5/

29
/2

3.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



emin values of the Nansha coral sandy soils reached their minimum
values near FC = 30%.

Specimen Preparation and Test Program

For RC tests, according to ASTM D3999/D3999M (ASTM 2013),
three or four specimens of each coral sandy soil with various Dr
values were prepared by a dry tamping (DT) method similar to the
one used by Chen et al. (2021b). In this method, the oven-dried
coral sand was placed in four sublayers into split molds from a fun-
nel with near-zero falling head. Because the compaction of each
succeeding layer would densify the previous sand layers, the layer
masses were decreased slightly from top to bottom to obtain uni-
form density; thus the mass of each subsequent layer was 1%–2%
less than that of the previous layer to obtain uniform density.

The specimens were 50 mm in diameter and 100 mm in height,
and 63 specimens in total for the 19 coral sandy soils were tested
in this study. Each specimen was consolidated isotropically in
multiple stages to σ 0

c ¼ 20 (only for the Nansha coral sandy
specimens), 50, 100, 150, 200, and 300 kPa. After each stage of
consolidation, the axial deformation was measured and used to cal-
culate the actual e value after consolidation based on an assumption
of isotropic deformation. Thus, 366 data of G0 were obtained in
this study.

Test Results and Discussions

Fig. 6 plots G0 versus e for the 19 coral sandy soils. The G0 values
of each coral sandy soil increased with σ 0

c and decreased with e at a

Table 1. Index properties of tested soils and best-fitted parameters in Hardin’s equation

Sandy soil Gs

Particle shape

Test
group Sand ID

Index propertiesa Group
symbol
(USCS)

Eqs. (1) and (3)

r s R Cu Cc

d50
(mm)

FC
(%) emax emin A b n

Nansha coral
sandy soil

2.77 0.31 0.57 0.44 N-CU N-CU1 2.10 0.92 0.55 0 1.360 0.751 SP 90.52 1.15 0.47
N-CU2 2.47 0.87 0.53 0 1.182 0.646 SP 76.43 1.17 0.50
N-S0b 3.35 0.93 0.52 0 1.162 0.631 SP 81.58 1.10 0.51
N-CU3 5.99 0.65 0.52 0 0.958 0.516 SP 60.90 1.20 0.53
N-CU4 11.20 0.32 0.52 0 0.890 0.453 SP 63.42 1.05 0.54

N-D N-D1 3.05 0.64 0.21 0 1.165 0.582 SP 67.25 1.15 0.51
N-S0b 3.35 0.93 0.52 0 1.162 0.631 SP 81.58 1.10 0.51
N-D2 3.35 0.97 1.05 0 1.162 0.646 SP 80.65 1.11 0.50
N-D3 2.99 1.10 1.45 0 1.148 0.650 SP 80.77 1.14 0.50
N-D4 3.26 0.99 2.00 0 1.183 0.733 SP 86.35 1.06 0.48

N-FC N-S0b 3.35 0.93 0.52 0 1.162 0.631 SP 81.58 1.10 0.51
N-FC1 4.40 1.16 0.49 5 1.101 0.548 SP 65.26 1.16 0.51
N-FC2 8.03 2.01 0.46 10 1.019 0.450 SW-SM 64.28 0.96 0.51
N-FC3 24.46 5.76 0.43 15 1.009 0.412 SM 61.93 0.95 0.53
N-FC4 29.25 5.86 0.40 20 0.999 0.375 SM 60.69 0.92 0.53
N-FC5 32.29 0.88 0.34 30 0.958 0.369 SM 59.21 0.93 0.54
N-FC6 30.22 0.15 0.27 40 1.025 0.401 SM 74.25 0.79 0.53

— Fines 3.41 1.73 0.038 100 — — ML — — —

Xisha coral
sandy soil

2.81 0.19 0.33 0.26 X-CU X-CU1 2.10 0.92 0.55 0 2.132 1.455 SP 183.97 1.79 0.48
X-CU2 2.47 0.87 0.53 0 1.999 1.328 SP 157.87 1.77 0.51
X-S0 3.35 0.93 0.52 0 1.926 1.229 SP 137.07 1.61 0.53
X-CU4 11.20 0.32 0.52 0 1.430 1.050 SP 110.63 1.81 0.54

Note: USCS = Unified Soil Classification System.
aCu ¼ d60=d10 andCc ¼ d230=ðd10d60Þ, d10, d30, d50, and d60 are particle sizes corresponding to 10%, 30%, 50%, and 60% finer on the cumulative particle-size
distribution curve, respectively.
bDuplicate sand in various test groups.
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Fig. 5. Variations of emax and emin for the tested coral sandy soils in (a) Test groups N-CU and X-CU; (b) Test group N-D; and (c) Test group N-FC.
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fixed σ 0
c (Fig. 6). Table 1 lists the best-fitted values of the material

constants A, b, and n in Hardin’s equation [for convenience in dis-
cussion, which is referred to as Eq. (1) combined with Eq. (3) here-
after] for each coral sandy soil. The n values of the Xisha coral
sandy soils were nearly the same as those of the Nansha coral sandy
soils, whereas the A and b values of the Xisha coral sandy soils
were approximately 2 and 1.5–2 times those of the Nansha coral
sandy soils, respectively (Table 1). This indicates that a unique cor-
relation does not exist between G0 and e for coral sandy soils at
different σ 0

c.
Fig. 7 plots G0 versus e of the Nansha coral sandy soils at fixed

σ 0
c ¼ 100 kPa, as well as the best-fitting curves by Hardin’s equa-

tion. The G0 − e curve moves to the left with increasing Cu [Fig. 7
(a)], but moves to the right with increasing d50 [Fig. 7(b)].
However, the G0 − e curve first moves to the left with increasing
FC, and then moves to the right as FC exceeds 20% [Fig. 7(c)]. This
indicates that, for a given e and σ 0

c,G0 decreases with increasing Cu

and decreasing d50, whereas it first decreases and then increases
with increasing FC. The power b of the state variable e in
Eq. (3) is a constant value, implying that no obvious correlation
exists between b and particle gradation parameters (Cu, d50, and
FC); this is consistent with the result of Payan et al. (2016).

Fig. 8 shows the correlation between G0 and e of the Nansha
coral sandy soil (Sand ID N-S0) and the Xisha coral sandy soil
(Sand ID X-S0) with the same particle-size distribution. TheG0 − e
curves of the Xisha coral sandy soil lie to the upper right side of

those of the Nansha coral sandy soil at the same σ 0
c, and the maxi-

mum value of e for the Nansha coral sandy soil was smaller than the
minimum value of e for the Xisha coral sandy soil. This indicates
that e cannot be used as a proxy to compare the G0 values of the
Nansha and Xisha coral sandy soils. It also confirms that the cor-
relation between G0 and e for different coral sandy soils may be
different even with identical particle-size distributions, which is
attributed to the significantly different particle shapes. This implies
that Hardin’s equation should not be applied directly for Nansha
and Xisha coral sandy soils.

Fig. 9 plots the variation of G0 versus Dr of the Nansha coral
sandy soil (Sand ID N-S0) and the Xisha coral sandy soil (Sand ID
X-S0). The G0−Dr curves in Fig. 9 were transformed from the cor-
responding G0 − e best-fitting curves in Fig. 8 by converting e to
Dr. The trends of the G0−Dr curves of the Nansha and Xisha coral
sandy soils were comparable. For a given σ 0

c and Dr, the G0 values
of the Xisha coral sandy soils were 25%–30% less than those of the
Nansha coral sandy soils, indicating that the G0 of the coral sandy
soils decreased with the decrease of R. Similar observations were
made by Cho et al. (2006) and Payan et al. (2016).

Fig. 10 compares the measured G0 values of the tested coral
sandy soils and the values predicted by the updated Seed’s equa-
tion. The solid diagonal line in Fig. 10 represents the equality line.
Clearly, the difference between predictions and measurements for
Nansha coral sandy soils mostly was within 20%. However, for the
Xisha coral sandy soils, the G0 values predicted by the empirical
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Fig. 6. Variation of G0 with e for all coral sandy soil specimens in (a) Test group N-CU; (b) Test group N-D; (c) Test group N-FC; and (d) Test
group X-CU.
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equations were consistently larger than the measured G0 values by
20%–60%. The possible reason may be that Eqs. (4) and (5) were
calibrated using the G0 values of siliceous sandy soils with round
particle shapes. This indicates that theG0 values of sandy soils may
be closely related to the regularity R of soil particles. Consequently,
the reliability of the updated Seed’s equation is not guaranteed for
coral sandy soils with angular and irregular particle shapes.

Unified Formula for G0

Because the G0 of each sandy soil decreases with e at constant σ 0
c,

the minimum small-strain shear modulus G0min corresponding to the

40

80

120

160

0.3 0.6 0.9 1.2 1.5
40

80

120

160

40

80

120

160

c 100 kPa

Test group N-CU

Legend   Sand ID   Cu

N-CU1    2.10 
N-CU2    2.47 
N-S0       3.35 
N-CU3    5.99
N-CU4    11.20 

G0min

G0max

,suludo
m

raeh s
niarts- lla

mS
G

0
) aP

M(

(a)

Increasing Cu

c 100 kPa

Test group N-FC

Legend   Sand ID      FC
N-S0          0
N-FC1       5%
N-FC2       10%
N-FC3       15%
N-FC4       20%
N-FC5       30%
N-FC6       40%

G0min

G0max

,suludo
m

raehs
niart s- lla

mS
G

0
)aP

M(

Global void ratio, e
(c)

FC = 0-20%

FC = 20%–40%

c 100 kPa

Test group N-D

Legend    Sand ID      d50

N-D1        0.21 mm
N-S0         0.52 mm
N-D2        1.05 mm
N-D3        1.45 mm
N-D4        2.00 mm

G0min

G0max

,suludo
m

raehs
niarts-lla

mS
G

0
)aP

M(

(b)

Increasing d50

Fig. 7. G0 − e relationships at σ 0
c ¼ 100 kPa for Nansha coral sandy
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emax and the maximum small-strain shear modulus G0max corre-
sponding to the emin are the lower and upper limits of the G0,
respectively, which are referred to collectively as the extreme G0

values. The e value of a specimen continuously decreases during the
consolidation processing, so it is impracticable to directly measure
the G0 value of a specimen in the loosest packing state. In addition,
because the membrane will be punctured by subangular and angular
coral sand particles in the compaction processing, preparation of a
specimen in the densest state is very difficult in the laboratory. In this
study, the Dr values of the tested specimens ranged between 13%
and 90%. TheG0min and G0max values in Fig. 9 are those determined
by extrapolation via Hardin’s equation using the best-fitting coeffi-
cients (Table 1), as illustrated in Fig. 8.

Fig. 11 plots all the measured G0 versus e for the 19 coral sandy
soils tested at various σ 0

c values, together with the data points
ðG0max; eminÞ and ðG0min; emaxÞ. At the constant σ 0

c, the measured
pair of data points ðG0; eÞ was distributed in a narrow strip. The
data points ðG0max; eminÞ and ðG0min; emaxÞ were located approxi-
mately at the upper and lower boundaries of the narrow strip of
data points ðG0; eÞ. This implies that the best-fitting curves of data
points ðG0max; eminÞ and ðG0min; emaxÞ can be regarded as the upper
and lower boundaries of the measured pair of data points ðG0; eÞ,
respectively, which can be expressed as follows:

G0max ¼ 105.02e−0.35min

�
σ 0
c

Pa

�
0.49

ð9Þ

G0min ¼ 62.59e−0.35max

�
σ 0
c

Pa

�
0.49

ð10Þ

Therefore, the upper and lower boundaries of the data points
ðG0; eÞ imply the comprehensive influence of the material property
indexes Cu, d50, and FC, and the particle shape and mineralogy of
sandy soils.

To better analyze the data, a dimensionless constant G0nor is
defined as follows:

G0nor ¼
G0 − G0min

G0max − G0min
ð11Þ

Based on Eq. (11), it is expected that G0nor depends only on
e or Dr of the specimen, and the influence of σ 0

c is eliminated.
Fig. 12(a) shows the variation of G0nor versus Dr for the Nansha
coral sandy soil (Sand ID N-S0) and the Xisha coral sandy soil
(Sand ID X-S0). A power-law correlation exists between G0nor
and Dr. Fig. 12(b) plots G0nor versus Dr for all the tested coral
sandy soils. All the data points in Fig. 12(b) are within a very
narrow band, implying that a virtually unique correlation exists
between G0nor and Dr regardless of the particle shape, σ 0

c, Cu,
d50, FC, emin, and emax for different sandy soils. The correlation
between G0nor and Dr can be fitted using a power law function,
and the fitting result is as follows:

G0nor ¼ D1.59
r ð12Þ
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where Dr = decimal form. The R-squared value of fitting is 0.92,
indicating a higher reliability of Eq. (12).

The combination of Eqs. (11) and (12) gives

G0 ¼ D1.59
r ðG0max − G0minÞ þG0min ð13Þ

Substituting Eqs. (9) and (10) into Eq. (13) gives

G0 ¼ 62.59

��
1.678

�
emax

emin

�
0.35 − 1

�
D1.59

r þ 1

�
e−0.35max

�
σ 0
c

Pa

�
0.49

ð14Þ

The remarkable merit of Eq. (14) is that the influences of the
various factors onG0 can be accounted for in a simple yet collective
manner. For a sandy soil with a specific particle size distribution,
emin and emax are fixed, and Dr½¼ðemax − eÞ=ðemax − eminÞ� is re-
lated only to e. Using Eq. (14), the G0 values at various Dr values
can be calculated, ranging between G0min at Dr ¼ 0 and G0max at
Dr ¼ 100%. The G0 − e relationship in Eq. (14) by converting Dr
to e for two coral sands (X-CU1 and X-CU4) is illustrated in
Fig. 11. Thus, G0 can be predicted easily using Eq. (14). This
method is termed the extreme void ratios–based G0 formula in this
study.

Fig. 13 compares the G0 values predicted by the proposed ex-
treme void ratios–based formula with the measured values for the
coral sandy soils. Generally, the deviations between the predicted
and the measured G0 were within 15%, convincingly illustrating
the good performance of the proposed formula.

Validation and Discussion

Extensive laboratory element test data of G0 for sandy soils already
exist in the literature. To validate the applicability of the proposed
unified G0 formula [Eq. (14)], a database was established in this
study, in which 1,493 relevant test data for various sandy soils with
different particle-size distributions, particle shapes, and mineralo-
gies were obtained from 12 references. Of the 1,493 test data va-
lidated in this paper, 1,027 were siliceous sandy soil data, 57 were
calcareous sandy soil data, and 409 were coral sandy soil data. The
basic information of the database and the researchers involved
are summarized in Table 2. The specific gravity Gs of 2.65 for
the Dorsten siliceous sandy soil in Wichtmann and Triantafyllidis

(2009) was inferred from Lo Presti et al. (1997) and Youn et al.
(2008). The values of emax and emin in Senetakis and He (2017)
and Liu et al. (2016) also were inferred. In their research, several
specimens with various void ratios for each sandy soil were tested.
It was assumed that the tested specimens of loosest and densest
void ratios (eL and eD) for each sandy soil corresponded to spec-
imens of Dr ¼ 30% and Dr ¼ 80%, respectively. Thus, the emax
and emin values can be inferred by solving the following set of
equations:

ðemax − eLÞ=ðemax − eminÞ ¼ 30% ð15Þ

ðemax − eDÞ=ðemax − eminÞ ¼ 80% ð16Þ

Fig. 14 summarizes the particle-size distribution curves of the
sandy soils in the database. These sandy soils were classified as
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Fig. 12.Variation ofG0nor withDr for (a) Nansha coral sandy soil (Sand ID N-S0) and Xisha coral sandy soil (Sand ID X-S0); and (b) all tested coral
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Table 2. Summary of basic information of sandy soils in the literature for validating proposed G0 formula

Reference
Test
type

Specimen
preparation method Sandy soil Particle shape Sand IDa

Index properties Group
symbol
(USCS)Gs Cu

d50
(mm)

FC
(%) emax emin

Cataño-Arango (2006) RC AP Cabo Rojo calcareous sandy soil Subangular to angular — 2.86 2.10 0.38 — 1.560 1.262 SP
Ha Giang et al. (2017) BE MT Belgian siliceous sandy soil Round to subangular Mol 2.64 1.44 0.17 — 0.930 0.581 SP

Abu Dhabi coral sandy soil Subangular to angular S 2.79 3.46 0.73 — 1.330 0.903 SP
S1 2.79 1.86 0.23 — 1.471 0.933 SP
VS 2.79 5.43 0.43 — 0.956 0.508 SP
SVS 2.79 5.43 0.43 — 1.129 0.652 SP
SMol 2.79 1.44 0.17 — 1.340 0.843 SP

Goudarzy et al. (2016) RC DT Hostun quartz sandy soil — CHS 2.65 1.96 0.34 — 1.023 0.671 SP
Jafarian and Javdanian (2020) RC AP Bushehr siliceous-carbonate sandy soil Angular to subangular 1, 4, 7, 10, 13, 16 2.70 3.43 0.35 — 0.882 0.671 SP
Liu et al. (2016) RC DT Toyoura quartz sandy soil — — 2.65 1.39 0.22 — 0.937b 0.631b SP

Fujian quartz sandy soil — — 2.65 2.92 0.98 — 0.726b 0.484b SP
Morsy et al. (2019) RC AT Dabaa coral sandy soil Subrounded to angular 9–12, 19 2.79 2.4 0.31 9.2 1.040 0.750 SP-SM
Lo Presti et al. (1997) RC — Toyoura quartz sandy soil — 1–14 2.65 1.35 0.22 — 0.985 0.611 —

Quiou carbonate sandy soil — 1–21 2.72 4.40 0.75 — 1.281 0.831 —
Catania siliceous sandy soil — 1–4, 6 2.68 2.20 0.24 — 0.850 0.592 —

Senetakis et al. (2012) RC DT Quartz siliceous sandy soil Subrounded N1 2.67 1.58 0.27 — 1.008 0.608 SP
N2 2.67 2.76 0.56 — 0.841 0.467 SP
N3 2.67 1.34 0.60 — 0.963 0.628 SP

Senetakis and He (2017) RC — Western Australia carbonate sandy soil Subangular BS-1–BS-3 2.68 1.70 0.23 — 1.630b 1.118b SP
Shi et al. (2020) BE DT Persian Gulf coral sand–fines mixtures Subangular to angular S1 2.81 3.83 0.60 0 1.188 0.728 SP

S1þ 10%FC 2.81 — — 10 1.127 0.604 SW-SM
S1þ 20%FC 2.80 — — 20 0.988 0.516 SP-SM
S1þ 30%FC 2.80 — — 30 0.946 0.498 SW-SM
S1þ 40%FC 2.79 — — 40 1.051 0.517 SW-SM
S1þ 50%FC 2.79 — — 50 1.067 0.576 SW-SM
100%FC 2.76 — — 100 1.649 0.993 SM

Wichtmann and
Triantafyllidis (2009)

RC AP Dorsten quartz sandy soil Subangular L2 2.65b 1.5 0.2 — 0.994 0.595 SP
L4 2.65b 1.5 0.6 — 0.892 0.571 SP
L6 2.65b 1.5 2.0 — 0.877 0.591 SP
L10 2.65b 2.0 0.6 — 0.865 0.542 SP
L11 2.65b 2.5 0.6 — 0.856 0.495 SP
L12 2.65b 3.0 0.6 — 0.829 0.474 SP
L14 2.65b 5.0 0.6 — 0.748 0.395 SP
L16 2.65b 8.0 0.6 — 0.673 0.356 SP
L17 2.65b 2.0 2.0 — 0.826 0.554 SP
L18 2.65b 2.5 2.0 — 0.810 0.513 SP
L19 2.65b 3.0 2.0 — 0.783 0.491 SP
L21 2.65b 5.0 2.0 — 0.703 0.401 SP
L23 2.65b 8.0 2.0 — 0.520 0.398 SP
L24 2.65b 2.0 0.2 — 0.959 0.559 SP
L25 2.65b 2.5 0.2 — 0.937 0.545 SP
L26 2.65b 3.0 0.2 — 0.920 0.541 SP-SM

Youn et al. (2008) RC, BE, TS AP Toyoura quartz sandy soil — — 2.65 1.29 0.20 — 0.982 0.617 SP
Silica sandy soil — — 2.63 2.01 0.16 — 0.854 0.642 SP

Note: RC = resonant column test; BE = bender element test; TS = torsional shear test; AP = air pluviation; DT = dry tamping; MT = moist tamping; and USCS = Unified Soil Classification System.
aSand ID copied from the original paper.
bConjectural value.
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poorly graded sand and poorly graded sand with gravel (SP), poorly
graded sand with silt (SP-SM), well-graded sand with silt (SW-SM),
and silty sand (SM), according to the Unified Soil Classification
System (ASTM 2011) (Table 2).

Fig. 15 plots the G0 data versus e compiled from the database.
All theG0 data were located in a range between the upper and lower
boundaries determined by Eqs. (9) and (10), respectively (Fig. 15).
Approximately 64.5%, 33.5%, and 2% of the database were from
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RC, BE, and torsional shear (TS) tests. Although the G0 database
was collected from various testing methods, there was no dramatic
difference between the upper and lower boundaries among the
compiled G0 data obtained from various tests.

Fig. 16 compares the measured G0 values of various sandy
soils compiled from the database and the values predicted by
the proposed extreme void ratios–based G0 formula [Eq. (14)].
The deviation between the predicted and the measured G0 values
were within a range of �20% for data from RC and TS tests
[Figs. 16(a–d)]. This prediction was slightly weaker than the pre-
diction of the tested coral sandy soils (Fig. 13), but still satisfactory.
Bayat and Ghalandarzadeh (2019) investigated the influence of
the specimen preparation methods on the G0 of sand, and found
that the G0 of the specimens prepared by the moist tapping (MT)
method was the largest, followed by the dry deposition (DD)
method, and the smallest G0 was for the water sedimentation
(WS) method. Gu et al. (2015) showed that the G0 values of the
specimens prepared by the MT method from RC and TS tests are
about 6%–7% higher than those of the air pluviation (AP) and dry
tamping (DT) specimens. Because the G0 values in the literature
data were measured by different apparatuses and operators at differ-
ent specimen preparation conditions, inherent discrepancies exist
among the measured G0 values in the literature data. Hence, the
reliability of the proposed G0 formula in this paper is convincingly
confirmed. Fig. 16(e) compares the measured and predictedG0 data
from the BE tests. The predicted G0 values of the siliceous sandy
soils in Youn et al. (2008) agree very well with the measured
values. However, the proposed G0 formula overestimated the G0

values of the coral sandy soils in Ha Giang et al. (2017) and Shi
et al. (2020), especially the G0 values in the cases of σ 0

c ¼ 50 and
100 kPa in Shi et al. (2020), and the deviation between the pre-
dicted and the measured G0 values generally was within �30%,
which is higher than the deviations for the RC and TS tests.

Many researchers have concluded that the largest uncertainty
and difficulty of BE tests lie in the determination of the travel
time of the shear wave (Jovicic et al. 1996; Lee and Santamarina
2005; Yamashita et al. 2009; Yang and Gu 2013; Gu et al. 2015).

Yang and Gu (2013) showed that the measured G0 increases with
the ratio of wavelength (λ) to d50 for the peak-to-peak method,
whereas it decreases with the increase of λ=d50 for the start-to-start
method. Shi et al. (2020) adopted the peak-to-peak method to de-
termine the arrival time in multidirectional BE tests with an exci-
tation frequency of 15 kHz, and there is a potential effect of
anisotropy on the value of G0. The results indicated that the mea-
sured G0 values of the coral sandy soil are smaller than those of
siliceous sandy soils at σ 0

c < 100 kPa, for which the calibrated stress
power n in Eq. (1) ranging from 0.63 to 0.77 for the coral sandy soil
was larger than the typical range of 0.35–0.7 for siliceous sandy
soils. In addition, the G0 values determined by the peak-to-peak
method were confirmed to be smaller than those from RC tests
(Yang and Gu 2013). Ha Giang et al. (2017) used the start-to-start
method to determine the shear wave travel time through specimens
prepared by moist tamping in BE tests with an excitation frequency
of 10 kHz. The uncertainty of this method is relatively high because
it is difficult to determine the inflection point representing the first
arrival in the received wave due to the near-field and side-reflected
compressional waves. Yamashita et al. (2009) deduced from
international round robin test results that the scatter of measured
G0 values in BE tests was higher in DT specimens than in saturated
specimens. The G0 values measured by BE tests for MT specimens
were about 20% higher than those of the specimens prepared using
the AP and DT methods, and the difference was much larger for BE
tests than for RC and TS tests (De Alba et al. 1984; Gu et al. 2015).
Compared with the DT and AP methods, the MT method requires
much more compaction energy to achieve the same e due to the
induced capillary force occurring in the moist state. This implies
that different specimen preparation methods result in different
soil structures at the same e and σ 0

c. Furthermore, the BE test mea-
sures the local stiffness of a specimen along the wave travel path,
whereas the RC and TS tests measure the global (average) stiffness
of whole specimen. In addition, Fig. 16(f) compares the predicted
and measured G0 values for all the data from the literature. The
prediction bounds for capturing 94.2% of the data are �25%
deviation lines.
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Fig. 17 shows the G0 values measured by various BE
tests, and compares the G0 values from BE tests with those from
other types of tests of Toyoura sand (Yamashita et al. 2009).
There was a great deal of scatter of measured G0 values, up
to 30% or more, in different BE tests [Fig. 17(a)]. The G0 val-
ues from measured BE tests and from other types of tests
matched well, with a significant deviation of up to 25% or more
[Fig. 17(b)]. Given the inherent discrepancies among the G0 val-
ues using different signal interpretation methods and the effect
of sample preparation method in BE tests, the performance of
the proposed G0 formula for the data from BE tests also is
acceptable.

Fig. 18 presents the statistics of relative errors between the
predicted and measured G0 values of various sandy soils in the
database. The absolute relative error (ARR) is defined as

ARRð%Þ ¼
����measuredG0 − predictedG0

measuredG0

���� × 100% ð17Þ

The proportions of data points with ARRs less than 10%,
15%, 20%, and 25% were 60.5%, 75.8%, 87.9%, and 94.2%,
respectively. The mean ARR value for all the data was 10.4%.
Because of the effects of different specimen preparation methods,
testing apparatuses and principles, test details, signal interpreta-
tions, and so on, the G0 values obtained from different methods
cannot be expected to be almost the same. Although the particle
gradation and shape and mineralogy of the tested sandy soils in
this study and in the literature were different and the physical
state indexes and material properties varied greatly, Figs. 16
and 18 indicate that the proposed G0 formula can be used to
predict the G0 value of a wide range of sandy soils in a simple,
generic, and yet reliable way. This suggests that the proposed
equation works reasonably and robustly well for a wide range
of sandy soils with various particle shapes, mineralogies, and
particle-size distributions.

The upper-limit value of emax and the lower-limit value of emin
of various siliceous sandy soils in previous studies were about 1.0
and 0.4, respectively, whereas the values of (emax − emin) were in
the range 0.25–0.65 (e.g., Iwasaki and Tatsuoka 1977; Seed et al.
1986; Menq 2003; Wichtmann and Triantafyllidis 2009; Payan
et al. 2016). Therefore, significant differences in emax, emin, and
(emax − emin) exist between siliceous sandy soils and coral sandy
soils. Whether the G0 formulas developed mainly for siliceous
sandy soils in the literature are applicable for coral sandy soils
is a concern. Fig. 19 compares the G0 values predicted using the
formula proposed by Payan et al. (2016) and using the formula pro-
posed by Menq (2003) with the measured G0 values for the coral
sandy soils in this study. The formula of Payan et al. (2016) con-
siders the effects of σ 0

c, Cu, e, and particle shape, whereas the for-
mula of Menq (2003) considered the effects of σ 0

c, Cu, d50, and e.
Both formulas significantly underestimated the G0 values of coral
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sands, particularly Xisha coral sand (Fig. 19). Therefore caution
should be taken when using the formulas for coral sands.

Conclusion

A series of RC tests was conducted on Nansha and Xisha coral
sands of various gradings, focusing on the material and physical
properties that may affect the small-strain shear modulus G0.
The main conclusions and findings are summarized as follows:
1. The G0 value of a coral sand is affected significantly by its

particle-size distribution and particle shape. For constant e
and σ 0

c, G0 decreases as Cu increases, and increases as d50 in-
creases, respectively. However, G0 first decreases and then in-
creases with FC, and reaches a minimum value at a FC of
approximately 20%. For constant σ 0

c andDr, theG0 of the Xisha
coral sands was 25%–30% smaller than that of the Nansha
coral sands.

2. The extreme void ratios (emax and emin) of sandy soils are in-
trinsic properties that collectively reflect the effects of various
factors such as particle-size distribution and particle shape of
coral sands. At a constant σ 0

c, the maximum and minimum
small-strain shear modulus (G0max and G0min) decrease in a
power function form [Eqs. (9) and (10)] as emin and emax in-
crease. An explicit empirical formula [Eq. (14)] is proposed
to predict G0 that is a simple function of emax, emin, Dr, and
σ 0
c. Eq. (14) captures the effects of various factors on G0 in

a simple yet collective manner.
3. A large database of G0 of siliceous, carbonate, and coral sands

was compiled from the literature. The deviations between theG0

predicted using the proposed formula [Eq. (14)] and the mea-
sured G0 were within 20% for data from RC and TS tests
and 30% for data from BE tests. The mean value of absolute
relative errors for all the G0 data in this database was 10.4%,
indicating a wide applicability of the proposed formula.

4. Because of the large differences of extreme void ratios (both
emax and emin) between siliceous sandy soils and coral sandy
soils, further examination of the applicability of the proposed
G0 formulas using experimental data for other sandy soils would
be worthwhile.
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