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Liquefaction of silty sands remains puzzling due to the complexity involved in the interaction between
coarse and fine particles during loading. This paper presents first-hand experimental data from a series
of cyclic triaxial tests under controlled particle characteristics, with the aim to elucidate the influence of
particle-size disparity on the liquefaction resistance of sand−fines mixtures. A detailed analysis of the
test results and an experimental database compiled from the literature reveal that the particle-size
disparity, defined as the ratio between the characteristic sizes of the base sand and the fines, is a major
and rational factor controlling the reduction of cyclic resistance of sand−fines mixtures as compared
with factors such as the grading and shape of the base sand. A simple, explicit expression is further
proposed to properly account for the reduction of cyclic resistance of sand due to fines.
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NOTATION
A, a, B, b fitting parameters

af gradient of Kfc–FC relationship
Cu coefficient of uniformity

D, d particle size
DX, dX particle size with X% finer particles

ec void ratio after consolidation
Kfc correction factor for fines content
Mw moment magnitude of earthquake
Nl number of cycles to liquefaction

qcyc amplitude of cyclic deviatoric stress
σ′1c, σ′3c effective axial and lateral stress, respectively

σ′nc effective normal confining pressure on maximum
shear stress plane

χ particle-size disparity ratio

INTRODUCTION
While soil liquefaction has been extensively investigated
since the 1964 Niigata earthquake, recent earthquakes in
Japan and New Zealand (Cubrinovski et al., 2011; Yasuda
et al., 2012) indicate that a proper evaluation of liquefaction
potential of silty sands remains puzzling. Previous studies
mainly focused on the effects of fines content (FC) on the
cyclic behaviour and resistance of silty sands (Shen et al.,
1977; Chang, 1987; Kuerbis et al., 1988; Chien et al., 2002;
Carraro et al., 2003; Papadopoulou & Tika, 2008; Dash &
Sitharam, 2009; Kokusho et al., 2012), and diverse obser-
vations and conclusions were reported. This divergence is
probably due to different density parameters (e.g. void ratio,
skeleton void ratio, relative density etc.) were chosen for

comparison. Yang et al. (2015) examined the rationale of
these different state variables and showed that the conven-
tional void ratio remains a rational one that is particularly
suited for the framework of critical state soil mechanics.
When compared at the same void ratio, a consistent trend
can be observed such that for a given sand−fines mixture the
cyclic liquefaction resistance is reduced with increasing FC
up to a threshold value (Stamatopoulos, 2010; Wei & Yang,
2015). Nevertheless, the amount of reduction was found
to vary significantly for different sand−fines mixtures.
For instance, Polito (1999) reported a reduction of cyclic
resistance of Yatesville sand mixed with Yatesville silt by as
much as about 27% for FC=12%, whereas a more
significant reduction of cyclic resistance of Monterey sand
mixed with Yatesville silt (44% at FC=10%) was observed.
What is the reason behind the diverse results and how to
properly account for the reduction of cyclic liquefaction
resistance due to fines, therefore, became critical questions
that needed action.

This paper presents an attempt to address the above
questions along the line of micromechanical considerations
(Yang & Wei, 2012; Wei & Yang, 2014), with focus on the
role of particle-size disparity in undrained cyclic resistance
of sand−fines mixtures. In doing so, test materials were
carefully prepared to minimise the effects of particle grading
and particle shape before conducting undrained cyclic tests.
Also, a great amount of effort was invested to compile a
quality database from the literature to allow for a more
comprehensive analysis. The first-hand data and interpret-
ations presented here provide an insight into the complicated
effects of fines on cyclic liquefaction resistance of sands.

EXPERIMENTAL PROGRAMME
Test materials
Four quartz sands, namely Toyoura sand, Fujian sand,
Ottawa sand (50–70) and Ottawa sand (20–30), were used as
the base sands in the laboratory tests. Table 1 summarises
their basic physical properties, and their particle-size
distribution (PSD) curves are presented in Fig. 1. The four
types of sand can be categorised into two groups – that is,
Toyoura sand and Fujian sand as one group while the two
types of Ottawa sand as the other group. Each group has
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parallel PSD curves (i.e. nearly the same coefficient of
uniformity,Cu) and similar particle shape. Toyoura sand and
Fujian sand mainly consist of sub-angular to sub-rounded
particles, while the two Ottawa sands mainly consist of
sub-rounded to rounded particles. In this connection, the
influences on cyclic resistance due to the differences of
particle grading (Kokusho, 2007) and of particle shape
(Wei et al., 2017) were minimised within each group.
To produce a sequence of sand dominant mixtures,

crushed silica fines (<63 μm) were added to each base
sand at varying percentages (0–20%) by mass. Abbreviations
were adopted for each series of mixture in the analysis; for
example, TSS stands for mixtures with Toyoura sand as the
base sand while OSS (20–30) stands for mixtures with
Ottawa sand (20–30) as the base sand. FC is represented by
the number directly following the letters.

Test procedures
A series of undrained cyclic triaxial tests was performed on
specimens reconstituted by the moist tamping method.
Details of the method were described in Sze & Yang (2014).
All reconstituted specimens were saturated by percolation of
carbon dioxide and de-airedwater, and then by applying back
pressure. The condition of full saturation was assumed when
the B-value was greater than 0·98. The specimens were
isotropically consolidated to the effective confining pressure
of 100 kPa and then loaded under uniform deviatoric stress
cycles. The loading magnitude is represented by the cyclic
stress ratio (CSR), which is defined as follows

CSR ¼ qcyc
2σ′nc

¼ qcyc
σ′1c þ σ′3c

ð1Þ

where qcyc is the amplitude of the cyclic deviatoric stress; σ′nc
is the normal effective stress on the maximum shear stress

plane; σ′1c and σ′3c are the axial and lateral effective stress
after consolidation, respectively. The initial void ratio prior
to cyclic loading (i.e. the post-consolidation void ratio ec)
was carefully determined by measuring the water content
after testing (Yang & Wei, 2012).

Determination of cyclic resistance
Flow-type failure and cyclic mobility are two common
failure patterns for the moist-tamped specimens (Yang &
Sze, 2011), which were also observed in this study. The cause
of different failure patterns is the result of combined effects
of void ratio, confining pressure, degree of stress reversal and
sample preparation method (Sze & Yang, 2014). Adding
fines may also lead to a change in failure pattern under
otherwise identical conditions. For specimens exhibiting
flow-type failure, it is logical to define the onset of flow as
failure, whereas for specimens exhibiting cyclic mobility,
failure is conventionally defined by attaining 5% double
amplitude (DA) of axial strain.

Different CSRs were applied to replicated specimens (the
void ratio difference of the specimens was <0·006) and thus
different numbers of cycles to failure/liquefaction (Nl) were
obtained. The results show that Nl increases with decreasing
CSR in a power relation

CSR ¼ a Nlð Þb ð2Þ
The cyclic resistance ratio (CRR), is defined as the CSR

causing liquefaction in a given number of cycles (e.g. Nl = 10
or 15) and corresponds to the moment magnitude (Mw) of
an earthquake. Generally, the mean number of equivalent
uniform cycles of ten corresponds to an earthquake with
Mw= 7 while the number of 15 is for an earthquake of
Mw= 7·5 (Idriss, 1999).

Table 1. Properties of the tested materials

Name Cu D50: mm emax emin Particle shape/plasticity

Toyoura sand 1·37 0·197 0·977 0·605 Sub-angular to sub-rounded
Fujiand sand 1·61 0·398 0·879 0·555 Sub-angular to sub-rounded
Ottawa sand (50–70) 1·20 0·252 0·879 0·592 Sub-rounded to rounded
Ottawa sand (20–30) 1·20 0·713 0·753 0·490 Rounded
Crushed silica silt 2·32 0·053 NA NA Non-plastic
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Fig. 1. PSD curves of the tested materials
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TEST RESULTS
Effects of FC
When compared with the same void ratio, the cyclic
resistance of sands decreases with increasing FC for all the
four series, as shown in Fig. 2. In this figure, CRR10
means that Nl = 10 is used to define CRR. FSS series and
OSS (20–30) series exhibit more decrease than their
counterparts – that is, TSS and OSS (50–70) series,
respectively. A correction factor, Kfc, can be defined as
follows to characterise the reduction of CRR due to addition
of fines

Kfc ¼ CRRfc=0

CRRfc¼0
ð3Þ

where CRRfc≠0 and CRRfc=0 are CRR of specimens at the
same void ratio and confining pressure when FC≠ and =0,
respectively. Polito & Martin (2003) suggested that Kfc can
serve as a standardised basis to compare the data from
different studies. For the silty sands tested in this study
(Fig. 3), Kfc = 1 for FC=0 and Kfc < 1 for FC>0, indicating
that the effect of fines is detrimental. In addition, differentNl
to define CRR has been found to have little influence on Kfc
based on the test results.
For each series of mixtures, the Kfc–FC relation exhibits a

certain degree of scatter, which is mainly due to the testing
error other than the effects of void ratio because no
consistent dependence of Kfc on void ratio is found. A
linear trend line can be applied to characterise Kfc–FC
relationship (Bouckovalas et al., 2003)

Kfc ¼ 1� afFCð%Þ ð4Þ
where af is the gradient of the trend line reflecting the degree
of detrimental effects due to fines. Obviously, the af of FSS is

larger than that of TSS and the af of OSS (20–30) is larger
than that of OSS (50–70). In each group of the materials, the
base sand is the only variable as the same fines were used.
While the differences in particle shape and grading are
minimised for the base sands of each group, the particle-size
disparity between the base sand and the fines is the
remaining major variable that may cause such difference.
Under otherwise identical conditions, adding the fines into
base sand with coarser size will form larger voids than
adding the same fines into a base sandwith finer size. Larger
voids tend to allow more fine particles to reside in the voids
and less fine particles in the force transfer. This will lead to a
less stable structure and thus a more reduction of cyclic
resistance for the mixtures with a larger size disparity.

Effects of particle-size disparity
The particle-size disparity, reflecting the size difference
between the coarse fraction and the fine fraction, can be
characterised by particle-size disparity ratio (χ) defined as
follows

χ ¼ D
d

ð5Þ

where D and d are the characteristic particle size of the base
sand and that of the fines. Several different particle-size
disparity ratios defined by different characteristic particle
sizes are commonly used, namely, χ50–50 =D50/d50 (e.g.
Monkul & Yamamuro, 2011; Liu & Yang, 2018),
χ10–50 =D10/d50 (e.g. Ni et al., 2004; Yang et al., 2015) and
χ15–85 =D15/d85 (e.g. Terzaghi et al., 1996), where DX and dX
are particle sizes with X% finer particles. As shown in Fig. 4,
af increases with χ, indicating that larger particle-size
disparity ratio leads to more reduction of CRR due to
addition of fines. Although different trend lines can be found
for each of the two groups, which may be due to the effects of
different gradings and particle shapes of the base sands, a
unique trend can give a fairly good characterisation using the
following equation

af ¼ A lnðχÞ � B ð6Þ
where A and B are fitting parameters. All the three
particle-size disparity ratios can be used to capture the
trend, and χ50–50 appears to result in a trend line with the
highest R2 for the mixtures tested.

LITERATURE DATABASE
The relationship of af–χ was established for mixtures of
uniformly graded sand and silt. It is of interest to investigate
whether or not the particle gradation affects this relationship.
In doing that, a database was collected from the literature, as
summarised in Table 2. The base sands in the database have
variousCu and particle shape, while the confining pressure is
mainly at 100 kPa. TheKfc–FC relationships of the literature
data are plotted in Fig. 5, showing diverse gradients.

Furthermore, Fig. 6 shows that af increases with increas-
ing χ. The af–χ data are scattered along the trend line to some
extent, but there is no clear effect due to varying particle
grading and particle shape. The scatter is possibly due to
different degrees of data quality and is also partly associated
with the extraction and conversion of the original cyclic
resistance data to af. Overall, the function in equation (6) can
give a reasonable description of the trend that af increases
monotonically with increasing size disparity ratio. Among
the three disparity ratios, χ10–50 leads to the best af–χ
correlation whereas χ50–50 appears to give the poorest
correlation. This observation implies that χ10–50 may be a
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more universal parameter for size disparity, whereas χ50–50
may be only suitable for mixtures with uniformly graded
sands and silts. More experimental data in future studies are
desired to validate this finding.

DISCUSSION
The coefficient of uniformity is widely recognised as an
important factor controlling the liquefaction resistance of
sands (Kuerbis et al., 1988; Kokusho, 2007), and has been
taken into account in empirical methods to predict the
liquefaction resistance of sands (e.g. Kim & Kim, 2006;
Jafarian et al., 2013). When a gap-graded soil is encoun-
tered, the application of Cu may be problematic. One of the
problems is that the coefficient of uniformity may change
significantly without leading to dramatically different
liquefaction behaviour when FC (or the finer-fraction
content) crosses 10%. The other problem is the difficulty in
determining the coefficient of uniformity when FC is exactly
equal to 10%. In addition, af is neither a simple function
of Cu of the base sands nor of the fines, as shown in Fig. 7.
For these reasons, the commonly used predicting models
involving Cu may not be applicable for gap-graded
silty sands.

The proposed af–χ relationship is mostly suitable for
non/low-plastic silty sands, and caution should be usedwhen
it is applied to sands containing plastic fines. For lower χ, the
relationship may be applicable for FC as high as more than
20% (e.g. TSS and Mailiao silty sand), but no more than the
transitional FC. For higher χ, the relationship may be
applied for FC less than 15%. This is because that the same
void ratio cannot be achieved for specimens with higher FC.Ta
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In addition, this study ignores the effects of confining
pressure based on the experimental observation so that the
Kfc–FC relation is not affected by confining pressure (Wei &
Yang, 2015). The implication is that af may not be dependent
on confining pressure.

CONCLUSIONS
This study aims to elucidate the effects of particle-size
disparity and FC on the cyclic resistance of silty sands
through a specifically designed experimental programme
along with literature data analysis. It is shown that the cyclic
resistance decreases with increasing FC when compared at
the same void ratio and under otherwise similar conditions.
The reduction of cyclic resistance can be reasonably
quantified by a factor, Kfc, which is linearly related to FC.
The gradient of the linear relationship, af, is found to be
highly dependent on particle-size disparity, χ10–50. In
general, af increases with increasing this size disparity
ratio, meaning a more reduction in cyclic resistance at the
same FC. However, no clear trend can be found between af
and the grading and shape of the base sand. Further
validation of these interesting findings using experimental
data on different sand−fines mixtures is worthwhile.
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