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A B S T R A C T

The objective of this paper is to investigate the bearing capacity of spatially varying soil in the presence of non-
stationary feature of undrained shear strength. Firstly, undrained shear strength is modeled by a non-stationary
random field. In this model, the mean of undrained shear strength is non-zero at the ground surface and linearly
increases with depth, while the coefficient of variation (COV) of undrained shear strength keeps constant. Based
on this non-stationarity, an algorithm is proposed to produce the corresponding random field. Then, Monte Carlo
Simulations are carried out to evaluate the statistical characteristics of the resulted bearing capacity, followed by
a detailed discussion on the effects of COV, strength gradient parameter, distribution type, and vertical auto-
correlation length. At last, two computation schemes that enable the prediction of statistical characteristics (e.g.,
mean, standard deviation, and cumulative probability function) of bearing capacity in non-stationary random
fields utilizing results from a stationary one are proposed, and demonstrated through numerical examples.

1. Introduction

It has been widely recognized that soils sometimes show consider-
able spatial variability, resulting in significant uncertainties in the es-
timation of soil parameters. The uncertainties are mainly due to the
following aspects: inherent soil variability, measurement errors, and
model transformation uncertainties [27]. Random field theory can be
adopted by introducing suitable correlation models to account for the
inherent soil variability, i.e. the variation of soil properties from one
point to another in space due to different depositional conditions and
different loading histories.
The past two decades have witnessed the growing interest of

studying the potential impacts of soil variability on the geotechnical
performance. Such a research covers a wide range of geotechnical
problems, such as the bearing capacity of foundations
[12,13,9,29,32,33,3,21,23], settlements of foundations [8,10,20], the
stability of slopes [1,14,15,33,4,39,18,19,38], and so on. The past
studies have clearly shown the importance of spatial variability of soil
properties for geotechnical designs. In general, considering the spatial
variability leads to a rational and economical design of foundations
[31,6]. Furthermore, some realistic failure modes, such as the non-
symmetric failure mode [12,29], which could not be observed under
the assumption of homogeneous soils, would be easily identified by

taking the spatial variability of soil properties into account.
In the presence of soil variability, various probabilistic methods

have been developed for predicting the reliability of geotechnical
structures. These include first-order second-moment (FOSM) method,
first-order reliability method (FORM), response surface method, and
Monte Carlo Simulation (MCS). Albeit computationally expensive, MCS
is often adopted in the reliability analysis due to its high accuracy. That
is why MCS has long been used to benchmark other approaches.
Recently, MCS implemented through random finite-element method
(RFEM) or non-intrusive stochastic analysis that integrates a commer-
cial finite difference method and the random field theory, has become a
popular approach to study the influence of soil variability on geo-
technical performances. In view of the advantages, this study will em-
ploy MCS to investigate the effect of spatial variability of undrained
shear strength on bearing capacity of a shallow foundation, which is a
classical geotechnical subject. As mentioned previously, the topic has
attracted considerable attentions, and it is reported that the bearing
capacity of a footing can be overestimated without accounting for the
inherent random heterogeneity of soils [13].
The stationary random field model has been widely used to describe

the spatial variability of soil parameters. However, it is well known that
soil parameters often exhibit non-stationary characteristics. Lumb [26]
pointed out two typical non-stationary types of soil properties: (a) mean
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of soil parameter linearly increases with depth while its standard de-
viation keeps constant; (b) both mean and standard deviation of soil
parameter increase with depth while its COV keeps constant. In the case
of type (a), a stochastic parameter is usually divided into a trend
function and a fluctuating component, and the fluctuating component
can be considered to be a zero-mean stationary random field. The re-
liability analysis of geotechnical problems involving type (a) spatial
variability has been well documented in the literature, such as Siva-
kumar Babu et al. [32,33]. The spatial variability of type (b) is always
confined to the undrained shear strength because it depends on effec-
tive stress of soil [26]. In the framework of probabilistic geotechnical
analysis, only a few recent works considered the non-stationary char-
acteristics of soil properties, for instance, Li et al. [22,21], Griffiths
et al. [16], Muller et al. [25], and Zhu et al. [38]. In this study, the non-
stationary random field model, whose mean value increases linearly
with depth while the COV remains constant as applied by Zhu et al.
[38], will be adopted to investigate the influence of spatial variability of
undrained shear strength on the bearing capacity of a shallow foun-
dation.
When investigating the effects of spatial variability of soil properties

on the bearing capacity, it is generally assumed (but not always) that
the undrained shear strength follows the lognormal distribution.
However, based on several studies reported in the literature, undrained
shear strength can follow different probability distribution functions
(PDF’s) for different types of soils and sites [29,2,35]. According to
Popescu et al. [29], the distribution type employed to define the soil’s
shear strength can have a considerable influence on the resulted
bearing capacity. As a result, this study will consider three different
types of distributions, e.g., Lognormal, Gamma and Beta.
The remainder of this paper is organized as follows. In the following

section, the method to simulate non-Gaussian non-stationary random
field based on the spectral representation method is proposed. Then, the
finite element model for analysis of the bearing capacity of a shallow
foundation is presented. In the finite element model, the random field
of the bearing capacity is simulated by the proposed method. Finally,
the results of the bearing capacity computed by MCS are discussed, and
the effects of non-stationary characteristics and different distribution
types of the undrained shear strength are illustrated.

2. Simulation of non-Gaussian non-stationary fields

In the stochastic analysis by MCS, a continuous-parameter random
field must be discretized into random variables to be implementable by
numerical method. In this regard, several methods have been devel-
oped, such as the midpoint method [5], the local average subdivision
(LAS) method [11], Turning bands methods (TBM) [24], the KL ex-
pansion [28] and the spectral representation method (SRM) [37,30].
Fenton [7] systematically investigated the characteristics of three
common random field generators (i.e. SRM, TBM and LAS), and gave a
number of useful and helpful guidelines and suggestions to choose the
algorithm in the application. Then, Stefanou and Papadrakakis [34]
proved that the SRM exhibits good features in converging to the target
autocorrelation function in the simulation of random process. In this
paper, the SRM is considered. The SRM is firstly proposed by Yaglom
[37], then developed by Popescu et al. [30] to simulate non-Gaussian
random field. Just recently, Wu et al. [36] developed the SRM proposed
by Popescu et al. [30] and provided an efficient method to simulate
multi-dimensional stationary non-Gaussian random fields by introdu-
cing a highly efficient iterative scheme. For simplicity, the improved
SRM method proposed by Wu et al. [36] will be extended herein to
simulate non-stationary non-Gaussian random field, as detailed below.
For more details about the feature of SRM, the paper given by by Wu
et al. [36] can be referred.
Consider a 2D homogeneous non-Gaussian non-stationary random

field y x z( , ), whose mean value and standard deviation increase line-
arly, but with a constant COV. Generally, y x z( , ) can be standardized

by:

y x z y x z µ¯ ( , ) ( ( , ) )/z z= (1)

where y x z¯ ( , ) is the standard non-Gaussian random field with zero
mean value and unit variance, µz and z are respectively the corre-
sponding mean value and standard deviation of the prescribed random
field at the depth z. It is clear that the random field y x z¯ ( , ) is stationary
subjected to an autocorrelation function ( , )NG x z . Mathematically,
y x z¯ ( , ) can be mapped from a standard Gaussian random field g x z¯ ( , )
(named as underlying Gaussian random field) through the nonlinear
memoryless transformation [17]:

y x z F g x z¯ ( , ) [ ( ¯ ( , ))]ȳ
1= (2)

where (·) is the standard unit Gaussian cumulative probability func-
tion (CDF) and F (·)ȳ is the marginal non-Gaussian CDF of y x z¯ ( , ), with
inverse function F (·)ȳ

1 .
The SRM can be utilized to simulate the (standard) underlying

Gaussian random field [36]:

( ) [ (
) ( )]

g x z S x z

x z

¯ ( , ) , cos

cos
l

N

l

N

G xl zl x z xl zl

l l xl zl l l

0

1

0

1

1 2
1

1

2

2

1 2 1 2

1 2 1 2 1 2

= +

+ + +
= =

(3)

where

l l N, 0,1, , 1xl i x i1 1 1i = = … (4)

l l N, 0,1, , 1zl i z i2 2 2i = = … (5)

N N/ , /x xu z zu1 2= = (6)

and x and z are the discretization steps in the wave number domain
along horizontal direction and vertical direction, respectively; and xu
and zuare the corresponding upper cut-off wave numbers. l l

1
1 2
and l l

2
1 2

are two sets of N N1 2 independent random phase angles uniformly dis-
tributed over the interval [0, 2 ]. S ( , )G x z is the target Gaussian
power spectral density (PSD) function, which can be obtained from the
Gaussian autocorrelation function ( , )G x z through the Wiener-
Khintchine transform:

S e( , ) 1
(2 )

( , ) d dG x z G x z
i

x z2
( )x x z z=

+ + +
(7)

where x and z are the distances in horizontal and vertical directions,
respectively.
According to the central limit theorem, the random fields generated

by Eq. (3) are asymptotically Gaussian as N1 and N2 simultaneously
approach infinity.
As the transformation shown in Eq. (2) is nonlinear, the Gaussian

autocorrelation function ( , )G x z utilized to simulate the underlying
Gaussian random field is not equal to the non-Gaussian autocorrelation
function ( , )NG x z . According to the non-Gaussian translation theory,
the relationship between them can be expressed as:

F g F g g g g g( , ) [ ( )] [ ( )] [ , ; ( , )]d dNG x z y y G x z¯
1

1 ¯
1

2 1 2 1 2=
+ +

(8)

where g g[ , ; ( , )]G x z1 2 is the joint Gaussian probability density
function (PDF) of underlying normalized autocorrelation functions

( , )G x z .
Prior to the simulation of the underlying Gaussian random field by

Eq. (3), the underlying Gaussian PSD function S ( , )G x z should be
determined. The abovementioned transformation is always possible to
use in the “forward” direction, but is not always possible in the “in-
verse” direction. It means, given an arbitrary non-Gaussian PSD func-
tion, it is not always possible to find the exact underlying Gaussian PSD
function. If the “inverse” case is not solvable, the pair of target non-
Gaussian PSD function and prescribed marginal non-Gaussian CDF is
considered to be “incompatible”. However, in the “incompatible” cases,
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there is still a strong desire to find a “compatible” underlying Gaussian
PSD function, whose corresponding non-Gaussian PSD function re-
sembles, as closely as possible, the prescribed non-Gaussian PSD func-
tion. For this purpose, a sample-free iterative scheme was proposed by
[36]. The details of the sample-free iterative scheme are shown in
Appendix A.
Once the underlying Gaussian PSD function S ( , )G x z is de-

termined, the standard underlying Gaussian random field g x z¯ ( , ) can be
readily generated by Eq. (3), and mapped to the standard non-Gaussian
random field y x z¯ ( , ) through Eq. (2). As a result, the desired non-
Gaussian non-stationary random field y x z( , ) is obtained by

y x z y x z µ( , ) ¯ ( , ) z z= + (9)

3. Description of finite element and random field models

In this study, a plane strain finite element analysis is performed by
using ABAQUS 6.11. The soil is modeled by a linear-elastic perfectly
plastic stress-strain law with Tresca failure criterion. The strip footing is
considered to be rigid and has a rough interface with the foundation
soil. An increasing pressure is applied to the strip footing, and the
bearing capacity failure of the footing is taken to have occurred when
the applied load leveled out within quite strict tolerances [13]. The
bearing capacity is the final force divided by the footing area.
The finite element model is 15m in width and 10m in depth, as

shown in Fig. 1. The model consists of 2400 elements, with 60 columns
and 40 rows, and 4-node reduced integration element with the size of
0.25m * 0.25m. The standard boundary conditions, i.e., roller in ver-
tical sides and fixed in the bottom, are applied to the model.
The soil model contains three parameters, i.e. Young’s modulus (E),

Poisson’s ratio ( ) and the undrained shear strength (cu). In the finite
element analysis, Young’s modulus (E) and Poisson’s ratio ( ) are
simply held constant as the bearing capacity is not sensitive to these
parameters [12], while the undrained shear strength (cu) is considered
as a stochastic parameter modeled by a random field. The Young’s
modulus is 20MPa. The Poisson ratio is set to be 0.49 to model the
undrained behavior of no volume change as well as to ensure numerical
stability.
The simulation method presented in above section is applied to

generate the samples of non-stationary random fields of cu. The mean
value of cu at the depth z=0 (i.e., the ground surface), uc z( 0)u = , is set to
be 40 kPa. The mean value of undrained shear strength ucu linearly
increases with depth, but the COV of cu keeps constant, i.e. 0.1, 0.3, and
0.5 in this study. The dimensionless strength gradient parameter M,
defining the increasing rate of the mean value of undrained shear
strength, is given as:

M
u u

u
c z H c z

c z

( ) ( 0)

( 0)

u u

u
= = =

= (10)

where uc z H( )u = is the mean value of cu at the bottom of the model, and H
is the depth of the foundation soil, which is 10m in the present study.
The dimensionless strength gradient parameter M is set to be 0, 0.5, 1.0
and 1.5, respectively, where M=0 means the random field is sta-
tionary.
A squared exponential 2-D autocorrelation function is adopted to

define the spatial variability of the random field of cu as follows:

l l( , ) exp( [( / ) ( / ) ])h v h h v v
2 2= + (11)

where h and v are the lag distances between any two positions in
horizontal and vertical directions, respectively; and lh and lv are the
autocorrelation lengths defining the decay rates in the horizontal and
vertical directions, respectively. Due to the nature of the stochastic
process of soils, the bearing capacity is more probabilistically sensitive
to lv than to lh [21]. To simplify the finite element analysis, this study
considers a constant lh=10m, and three different values oflv=2m,Fig. 1. FEM model of the shallow foundation.

Table 1
Summary of undrained shear strength properties.

Soil property Symbol Value/Range

The mean of undrained shear strength at ground
surface

ucu z( 0)= 40 (kPa)

Coefficient of variation COV 0.1; 0.3; 0.5
The strength gradient parameter M 0; 0.5; 1.0; 1.5
The normalized horizontal scale of fluctuation h 5
The normalized vertical scale of fluctuation v 1, 2.5, 5

Table 2
Three standard non-Gaussian distributions considered in the numerical ex-
ample.

Distribution PDF Parameters

Lognormal
f x( ) exp[ ]

N x
x µN

N

1
2 ¯

(ln ¯ )2

2 2=

ln(1 )N µ
2 2

¯2= + , µ µln ¯N
N
2
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l=

Gamma f x x e( )
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x x k k( ¯ )/ 2= , x k>

k 4=
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Beta f x x A B x( ) ( ) ( )C D
C D B A C D

C D( )
( ) ( )( ) 1

1 1= +
+

A x B< <

A 2=
B 3=
C 2=
D 3=

* ( ) is the Gamma function.

Fig. 2. The PDFs of the three standard non-Gaussian distributions with zero
mean and unit variance.
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5m, and 10m. To reflect the effect of geometric parameter of strip
footing, the correlation lengths are normalized into dimensionless va-
lues by the width of strip footing B, resulting in normalized scales of
fluctuation h and v. In all, the parameters involved in the simulation
of non-stationary random field of cu are summarized in Table.1.
To investigate the effect of distribution type of cu on bearing capa-

city, three types of distributions are considered, i.e. Lognormal dis-
tribution, Beta distribution and Gamma distribution. The details of
three standard distributions considered in this paper are given in

Table.2, and the PDFs of them are plotted in Fig. 2.
Based on the coordinate of elements in the finite element models, a

series of realizations of the random fields of cu are generated by the
proposed simulation method.

4. Analysis of simulation results

Extensive MCS analyses using the finite element model were con-
ducted to evaluate the strip footing bearing capacity with both

Fig. 3. The mean and standard deviation of the bearing capacity for 1v = . (a–c): mean value; (d–f): standard deviation.
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stationary and non-stationary spatially varying foundation soils. In the
framework of MCS, realizations of the random fields of cu were recalled
by a batch program to compute deterministically the bearing capacity
on each of them. At last, the bearing capacities for all realizations were
retrieved for statistical evaluation. In this study, 1000 simulations have
been performed for each type of random fields. It is worth noting that
rather than dealing with the actual bearing capacity, this study focuses
on the dimensionless bearing capacity factor defined by:

N
q

uci
fi

c z( 0)u
=

= (12)

where qfi is the bearing capacity computed for the ith realization and
uc z( 0)u = is the mean cu on the ground surface.

4.1. The first two statistical moments of bearing capacity

Based on the MCS results, firstly, the mean and standard deviation
of bearing capacity are studied, and then the effects of COV, the

Fig. 4. The mean and standard deviation (SD) of the bearing capacity for different cases of vertical autocorrelation length with COV=0.5. (a–c): 1v = ; (d–f): 5v = .
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strength gradient parameter M, distribution type, and vertical auto-
correlation length are discussed. A series of computed results is shown
in Figs. 3 and 4, which lead to the following observations concerning
the influence of spatial variability of cu of the foundation soil on the
computed mean and standard deviation of bearing capacity:

(1) effect of COV: The estimated mean bearing capacity considering
random field is smaller than the bearing capacity for deterministic

analysis. As COV of cu increases, the estimated mean bearing ca-
pacity decreases (as shown in Fig. 3(a)–(c)), while standard de-
viation of bearing capacity increases(as shown in Fig. 3(e)–(f)).
Similar observation about the effect of COV of cu on the estimated
mean bearing capacity was firstly given by Griffiths and Fenton
[12]. However, the influence of COV of cu on the standard deviation
of bearing capacity is more noticeable since an increase in the de-
viation of cu results in a higher deviation of bearing capacity.

Fig. 5. RNc for 1v = . (a): Beta; (b):Gamma; (c): Lognormal. Fig. 6. The COV of the bearing capacity for 1v = . (a): Beta; (b):Gamma; (c):
Lognormal.
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(2) effect of M: Both the mean and standard deviation of bearing ca-
pacity generally linearly increase with the strength gradient para-
meter M, which can be observed in all the subplots in Figs. 3 and 4.
The difference between estimated mean bearing capacity con-
sidering random field and the bearing capacity for deterministic
analysis does not show significant changes with the increasing ofM.
Specifically, for larger value of COV of cu, standard deviation of
bearing capacity increases steeply with M.

(3) effect of distribution type: It is obvious that the distribution type has
an impact on the computed results of bearing capacity, even when
they have the same mean and standard deviation. In particular, the
effect of different distribution types is enlarged for larger COV of cu.
Furthermore, from Fig. 3(c) and (f), it is easily observed that Log-
normal distribution shows the largest value in the estimated mean
bearing capacity but smallest value in the corresponding standard
deviation. This may due to reason that, for the Lognormal dis-
tribution, more values are distributed around the mean value of the
random field.

(4) effect of vertical autocorrelation length: As Li et al. [21] pointed out,
the effect of vertical autocorrelation length on the probabilistic
results of bearing capacity is more significant for foundation soils
with higher values of COV of cu. It is by this consideration, the mean

and standard deviation of bearing capacity for different cases of
vertical autocorrelation length with COV=0.5 are studied, results
as shown in Fig. 4. Generally, both the mean and standard deviation
of bearing capacity increase with the increase of the vertical auto-
correlation length. Similar conclusions with respect to stationary
random field case are drawn by Griffiths and Fenton [12], and by Li
et al. [21] for non-stationary random field case.

Alternatively, the ratio between the estimated mean bearing capa-
city and the corresponding bearing capacity for the deterministic case is
investigated. The ratio is defined as:

R
u

DetN
N M

N M

( )

( )
c

c

c
=

(13)

where uN M( )c is the estimated mean bearing capacity for a certain case
with a strength gradient parameter M, DetN M( )c is the bearing capacity
of the deterministic analysis, in which cu linearly increases over depth
with a strength gradient parameter M. Note that, DetN M( )c , which is
normalized by uc z( 0)u = (i.e. 40 kPa in this study), is also dimensionless.
Fig. 5 shows RNc in the analyzed cases. It was found that RNcchanges

slightly with the value ofM, and may be considered as a constant value.
Moreover, if COV of bearing capacity is investigated, similar results can
be obtained as shown in Fig. 6. The COV of bearing capacity slightly
increases with the value of M, but, to a certain extent, may also be
considered as a constant value.

4.2. Statistical distribution characteristics of the bearing capacity

In this section, the statistical distribution characteristics of bearing
capacity are studied. Fig. 7 shows some typical CDFs of bearing capacity
for different values of M. These results indicate that the bearing capa-
city will be underestimated if a stationary random field model is con-
sidered. This conclusion seems to differ from that given by Li et al. [21],
perhaps due to the different ways of normalizing the bearing capacity.
For example, the bearing capacity is normalized by uc z( 0)u = in this study,
while by uc z m( 5 )u = (the mean cu in the mid-depth) in Li et al. [21]. In-
terestingly, if the bearing capacities are normalized by the same way,
the conclusions will agree with each other.
Furthermore, if the resulted bearing capacity for each case is nor-

malized by:

( )N M N M µ¯ ( ) ( ) /c c N M N M( ) ( )c c= (14)

where N M¯ ( )c is the normalized Nc with zero mean value and unit
variance for a certain case with a strength gradient parameter M;
µN M( )c and N M( )c are the estimated mean and standard deviation of
bearing capacity for the corresponding case.
Fig. 8 shows the CDFs of N̄c for different distribution types, it was

found that, different types of undrained shear strength lead to different
shapes of CDFs of normalized Nc. Since both Lognormal and Gamma
distributions have richer right tails than Beta distribution, the cu with
Lognormal or Gamma distribution produces a larger amount of higher
bearing capacity than the cu with Beta distribution.
When the CDFs of N̄c for different values of M are compared, a very

interesting phenomenon can be observed. If only M is different but
other conditions defining the random field are the same, the CDFs of N̄c
for different values of M match each other very well (as shown in
Fig. 9). This may due to the reason that, the soil is modeled by a linear-
elastic perfectly plastic stress-strain law in this study. Furthermore, this
good agreement in CDFs of bearing capacity can be utilized to predict
the CDF of bearing capacity for non-stationary case according to the
CDF of the corresponding stationary case as described in the following

Fig. 7. The CDFs of the bearing capacity with lognormal distributed undrained
shear strength, 1v = , and COV=0.5.

Fig. 8. The CDFs of the normalized bearing capacity with COV=0.5, 1v = ,
and M=0.
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section.

4.3. Predicting the CDFs of bearing capacity for non-stationary case
utilizing the results of the corresponding stationary case

The benefit of estimating the CDFs of bearing capacity for the non-
stationary case according to the result of the corresponding stationary

case is obvious. To predict the stochastic characteristics of bearing ca-
pacity for the non-stationary case, firstly, the mean and standard de-
viation of bearing capacity for stationary case should be determined. As
mentioned previously, two conclusions can be given:

(1) both the mean and standard deviation of bearing capacity linearly
increases with M;

Fig. 9. The CDFs of the normalized bearing capacity with COV=0.5. (a–c): 1v = ; (d–f): 5v = .
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(2) the ratio RNc and COV of bearing capacity can be considered as a
constant value in the same case with different M.

According to these conclusions, two schemes can be proposed to
estimate the mean value and standard deviation for different values of
M. The first one (named as Scheme 1) is based on mean value and
standard deviation of the stationary case (M=0) and one non-sta-
tionary (i.e. M=1.5), and the other one (named as Scheme 2) is only
based on the mean value and standard deviation of the stationary case.
Scheme 1 mainly utilizes the first conclusion to linearly interpolate the
mean and standard deviation for any M, and Scheme 2 mainly utilizes
the second conclusion according to the ratio and COV of bearing ca-
pacity in the stationary case as well as the deterministic result of
bearing capacity for the corresponding non-stationary case.
The accuracies of those two schemes are shown in Table 3. It was

found that, both the mean value and standard deviation can be well
estimated by Scheme 1 since the relative error is around 0.5%, which is
acceptable in geotechnical engineering. However, in Scheme 2, the
relative errors of both the mean value and standard deviation increase
with M. For small value of M (i.e. 0.5), the relative error of the mean
value is lower than 0.5%, and the relative error of standard deviation is
lower than 2%, while, for large value of M (i.e. 1.5), the relative errors
of the mean value and standard deviation can reach 2% and 6%, re-
spectively. The reason for the higher relative errors of standard devia-
tion with respect to the large value of M is that, the COV of computed
bearing capacity tends to increase slightly with M, while it is assumed
as a constant in Scheme 2. By comparing the computational cost of
these two schemes, Scheme 1 needs two sets of MCS for the case of
M=0 and M=1.5, while Scheme 2 needs only one set of MCS for the
case of M=0 and one deterministic running for the corresponding M.
To predict the failure probability of strip footings, the CDFs of

bearing capacity should be evaluated. There is no universal model to fit
the PDF or CDF of bearing capacity for all different distributions of cu.
Therefore, it is desirable to utilize the estimated CDF of bearing capa-
city for stationary case to predict the CDF of bearing capacity for a
certain non-stationary case. Since the CDF of normalized bearing ca-
pacity for different M matches each other very well, the CDF of bearing
capacity for non-stationary case can be predicted according to the CDF
of normalized bearing capacity for the stationary case as well as the
corresponding mean value and standard deviation bearing capacity
estimated by Scheme 1 and Scheme 2. Fig. 10 shows some typical re-
sults of the predicated CDFs based on Scheme 1 and Scheme 2. It is
found that, for a lowerM (i.e.M=0.5), the difference between the CDF

estimated by MCS (called the target CDF) and the CDFs predicated by
Scheme 1 and Scheme 2 is insignificant. However, for a higher M (i.e.
M=1.0), the CDF predicated by Scheme 1 is also well identical with
the target one, while the CDF predicated by Scheme 2 is slightly dif-
ferent from the target one. In all cases, the accuracy of these two
schemes is deemed acceptable.

5. Summary and Conclusions

This paper focuses on investigating the stochastic result of bearing
capacity in the presence of non-stationary spatially variable of cu, which
is modeled by a non-stationary random field with non-zero mean at the
ground surface and linearly increased mean with depth, but a constant
coefficient of variation. The spectral representation method was ex-
tended to simulate the non-stationary non-Gaussian random field,
which, in turn, was applied to generate realizations of non-stationary
random field with Beta, Gamma and Lognormal distributions. Then,
MCSs were carried out to evaluate the statistical characteristics of the
bearing capacity. Parametric studies were performed to investigate the
effects of: (1) COV associated with the random field of cu, (2) prob-
ability distribution function (PDF) of cu, (3) the strength gradient
parameter M defining the non-stationary feature of cu; (4) vertical au-
tocorrelation length. According to this study, the following conclusions
were drawn:

(1) All the four factors as above mentioned have significant effects on
the estimated mean and standard deviation of bearing capacity. In
particular, both the estimated mean and standard deviation of
bearing capacity increase linearly with strength gradient parameter
M.

(2) The influence of M on RNcand COV of bearing capacity is very
minimal. As a result, both RNc and COV of bearing capacity may be
considered as constant values with different M.

(3) The CDFs of the normalized bearing capacity with different value of
M match each other very well.

Last but not least, two computation schemes were introduced to
predicate the mean and standard deviation, and even CDF of bearing
capacity for any non-stationary random field of cu, utilizing the results
of the stationary case (sometimes with one more non-stationary case).
The high accuracy of these two schemes was demonstrated through
numerical examples.

Table 3
Comparison of the mean and standard deviation of bearing capacity estimated by Scheme 1 and Scheme 2 with the target values.

M Mean Standard deviation

Target S1* E1(%)* S2* E2(%)* Target S1 E1(%) S2 E2(%)

Beta 0 4.637 – – – – 2.271 – – – –
0.5 4.926 4.905 0.43 4.913 0.27 2.438 2.425 0.53 2.406 1.28
1.0 5.192 5.173 0.37 5.123 1.32 2.591 2.579 0.46 2.509 3.12
1.5 5.441 – – 5.320 2.21 2.733 – – 2.606 4.66

Gamma 0 4.762 – – – – 2.059 – – – –
0.5 5.049 5.027 0.44 5.045 0.07 2.217 2.206 0.50 2.182 1.60
1.0 5.312 5.292 0.38 5.261 0.96 2.362 2.353 0.38 2.275 3.71
1.5 5.558 – – 5.463 1.70 2.499 – – 2.362 5.47

Lognormal 0 4.864 – – – – 1.927 – – – –
0.5 5.149 5.128 0.41 5.153 −0.08 2.079 2.069 0.48 2.041 1.82
1.0 5.410 5.392 0.33 5.373 0.69 2.220 2.211 0.41 2.128 4.09
1.5 5.657 – – 5.580 1.35 2.352 – – 2.211 6.01

* S1 and S2 mean the value estimated by Scheme 1 and Scheme2, respectively. E1 and E2 are the relative error of Scheme 1 and Scheme 2, respectively.

Y. Wu, et al. Computers and Geotechnics 110 (2019) 199–210

207



Acknowledgement

The supports by the National Natural Science Foundation of China
(Grant No. 41630638), the National Key Basic Research Program of

China (Grant No. 2015CB057901), the National Key Research and
Development Program of China (Grant No. 2016YFC0800205), and the
111 project (No. B13024) are greatly acknowledged.

Appendix A

According to Wu et al. [36], the general steps of the iterative scheme to estimate the underlying Gaussian PSD function are simply described as
follows.

Step 1: Give the underlying Gaussian PSD function

Fig. 10. Comparison of the CDF of the bearing capacity estimating by two schemes with the corresponding target one with 1v = , and COV=0.5. (a–c): M=0.5;
(d–f): M=1.0.
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At the first step, an initial guess for the underlying Gaussian PSD function should be provided. Generally, the initial underlying Gaussian PSD
function S ( , )G x z

(0) can be assumed as the target non-Gaussian PSD function S ( , )NG
T

x z .

Step 2: Compute non-Gaussian PSD function

At iteration (i), once a Gaussian PSD function S ( , )G
i

x z
( ) is given, the corresponding Gaussian autocorrelation function ( , )G

i
x z

( ) can be obtained
through the two-dimensional Winner-Khinchine equation

S e d d( , ) ( , )G
i

x z G
i

x z
i

x z
( ) ( ) ( )x x z z=

+ + +
(A1)

where superscript (i) indicates the i-th iteration of the algorithm.
The corresponding non-Gaussian autocorrelation function ( , )NG

i
x z

( ) can be determined from the above Gaussian autocorrelation function
( , )G

i
x z

( ) through the translation field theory (shown in Eq. (8)). Then, the non-Gaussian PSD function S ( , )NG
i

x z
( ) is obtained by means of the

inverse version of two-dimensional Wiener-Khintchine transform (shown in Eq. (9)).

Step 3: Decide whether the iteration goes on or not

After obtaining the non-Gaussian PSD function S ( , )NG
i

x z
( ) , it needs to decide whether the iteration will be ended or not. Generally, the decision

can be made based on the relative between the computed non-Gaussian PSD function S ( , )NG
i

x z
( ) and the target non-Gaussian PSD function

S ( , )NG
T

x z :

S S d d
S d d

| ( , ) ( , )|
( , )

i N
T

x z N
i

x z x z

N
T

x z x z

( )
( )

=
+ +

+ +
(A2)

If the error becomes small enough (e.g. less than 1%) or stabilizes to a certain value, the iteration can be finished and the current underlying
Gaussian PSD function should be saved. Otherwise, the upgrading of the underlying Gaussian PSD function S ( , )NG

i( )
1 2 should be conducted (as

described in the following step).

Step 4: Upgrade the underlying Gaussian PSD function

If the error is not within a tolerance value, the underlying Gaussian PSD function S ( , )NG
i

x z
( ) should be upgraded through the following scheme:

S S
S

S( , ) [ ( , )
( , )

] ( , )G
i

x z
N
T

x z

N
i

x z
G

i
x z

( 1)
( )

( )=+

(A3)

where β is a parameter to control the convergence rate.
After upgrading, a new Gaussian PSD function S ( , )G

i
x z

( 1)+ , which is positive definite, is obtained. However, the variance of the underlying
Gaussian PSD function will be changed through the upgrading shown in Eq. (A3). Thus, the new Gaussian PSD function S ( , )G

i
x z

( 1)+ should be
normalized by:

S
S

S d d
( , )

( , )
( , )G

N i
x z

G
i

x z

G
i

x z x z

( 1)
( 1)

( 1)=+
+

+ + +
(A4)

where the superscript N denotes the normalization.
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