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ABSTRACT: Interpretation of nonlinear stress-strain behavior of a material may require differentiating the load­
displacement curve constructed from experimental data. Pressuremeter and torsional shear tests in geotechnical
engineering are two examples that require such an operation. Differentiating experimental data is tricky because
(I) it is very sensitive to the noise inevitably existing in the measurements, and (2) the experimental data are
usually only available in discrete pairs, conventional finite-difference calculations give only an approximation
to the true differentiation. For these reasons, in practice the direct differentiation of experimental data is rarely
performed. Instead, the experimental data are usually fitted into a particular form of mathematical function,
resulting in a set of parameters representing the material behavior in an optimum sense. This paper presents a
markedly different approach. The method is based on the sampling theorem and utilizes a noise-filtered differ­
entiator to simultaneously differentiate the data and filter out the noise. The method performs true differentiation
without a preassumed mathematical expression. Examples are given to show the effectiveness and limitation of
this reported method.

(I)

INTRODUCTION

The data recorded during material tests are often in the form
of discrete load-displacement pairs. Here, load can be a force,
torque, or pressure; and the displacement can be a linear dis­
placement, twist, or volume change. To obtain the stress-strain
behavior, the recorded data need to be further interpreted. For
certain types of tests, such as torsional simple shear and pres­
suremeter tests in geotechnical testing, due to the nonuniform
strain fields in the specimens, the theoretical forms of the data
interpretation involve differentiation of the recorded data. For
instance, for torsional shear tests on solid cylindrical samples,
based on the assumption that the shear modulus is an arbitrary
function of the shear strain that varies linearly in the radial
direction, Taylor (1975) derived the following interpretation
equation:

G =..3.!.... (~ ! + ! dT)
-rrR 4 46 4 d6

where G = secant shear modulus corresponding to the shear
strain at the periphery of the sample; T = the torque applied
to the sample; 6 = angular displacement caused by T; and I
and R = length and radius of the sample, respectively. It can
be seen that to calculate G, one needs to know dT/de.

For pressuremeter tests on clay, shear stress-strain curve can
be deduced from the measured pressure-cavity strain relation­
ship (Palmer 1972; Mair and Wood 1987) as follows:

(2)

where p =applied pressure; €c =measured cavity strain that
is equal to one-half of the engineering shear strain 'Y; 'T' = shear
stress. Again, to determine the secant shear modulus G = T/'Y,
one needs to calculate dp/d€c'

It should be pointed out that (1) and (2) are derived from
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elementary mechanics without considering localization issues
(for instance, the gradient of angular displacement for torsional
shear may vary along the sample height due to the end con­
straints; cracking and bifurcation may also develop at high
strains). However, in consideration that (1) these two equations
have many practical applications (e.g., in geotechnical tests);
and (2) the scope of this paper is confined to describing a
method for differentiation of noisy data rather than a discus­
sion for data interpretation methods themselves, (1) and (2)
are selected in this paper as examples to demonstrate the ef­
fectiveness and limitation of the proposed method.

Unlike differentiating a smooth mathematical function, dif­
ferentiating experimental data is quite tricky. First, experi­
mental data are inevitably scattered because of noise contam­
ination, and by its nature the process of differentiation is
extremely sensitive to the measurement noise. Second, the
measured load and displacement data are usually discrete val­
ues, conventional finite-difference methods give only an ap­
proximation to the true differentiation. For these reasons, di­
rectly differentiating experimental data by the finite-difference
approach may lead to erratic and even totally meaningless in­
terpretation of the test results.

To avoid the difficulties associated with the differentiation,
it is a common practice to fit the experimental data to a par­
ticular form of mathematical functions, resulting in a set of
parameters representing the material behavior. Various func­
tions have been proposed for different applications. For in­
stance, for torsional simple shear tests the stress-strain rela­
tionships proposed by Hardin and Drnevich (1972) and
Ramberg and Osgood (1943) are commonly used, the mea­
sured torque-twist data are bound to "best" fit the torque-twist
relations corresponding to the proposed stress-strain relation­
ships (Chen and Stokoe 1979). For pressuremeter tests, the
measured data are fitted directly to various particular functions
(e.g., Prevost and Hoeg 1975; Robertson and Ferreira 1993)
and the derivatives of these functions in terms of dp/d€c are
then used to determine the shear modulus (Mair and Wood
1987).

The disadvantage of the curve-fitting approach is that the
form of the mathematical expression for the material behavior
is predetermined. It is evidenced by the existence of a variety
of such mathematical expressions that any single expression
may not be adequate to describe the nonlinear stress-strain
behavior of even one material. Because the curve-fitting ap­
proach is just a numerical technique, it does not give insights
into the discrepancy between the measured data and the fitted
curve.

An alternative app.oach to differentiate the experimental
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data is examined in this paper. The method is based on the
classical sampling theorem (Nyquist 1928; Shannon 1948) and
utilizes a low-pass filtered differentiator to simultaneously dif­
ferentiate the discrete test data and filter out the measurement
noise. The method performs true differentiation (not finite dif­
ference) without a preassumed mathematical expression, for
band limited data with no aliasing (it is approximately true for
most practical applications), the differentiation is exact in the­
ory. This method is highly immune from measurement noise
for interpreting the behavior of a material in the medium-to­
high strain range in which significant nonlinearity occurs, and
because of its theoretical background, the method provides an
insight into the influence of the data scattering on the deduced
stress-strain relationship. This paper presents the underlying
theory and the detailed algorithm of the method.

SAMPLING AND DIFFERENTIATION

and the Fourier transform of fd(t) becomes

Fd(jw) =f~ h(t)e-J..' dt =1. ±f" f(t)eJIC""e-JwI dt
-GO T K_-tlO _aD

=1. ±F[j(w - Kw,)]
T K.-~

(6)

(7)

The relationship between a continuous function and its dis­
crete samples has been described by the remarkable sampling
theorem uncoverd by Nyquist (1928) and Shannon (1948). In
this section it is the intention of the writers to provide a back­
ground to readers who are not familiar with this subject and
to show the theoretical basis of calculating derivatives of a
band-limited continuous function from its discrete samples.

The sampling theorem states that if a function contains no
(circular) frequency components above Wo in the Fourier do­
main, it can be completely represented by its equally spaced
samples with a sampling interval T = 2-rr/w, < -rr/wo' The orig­
inal function can be recovered without distortion from the
sampled values by passing through an ideal low-pass filter
with a bandwidth WI' where Wo < WI < w, - wo0 The frequency
w/2 is referred to as the Nyquist rate.

The basic idea of the sampling theorem is as follows. As
shown in Fig. I, a sequence of equally spaced samples fit) of
a continuous function f(t) can be viewed as the product of the
function and a train of unit impulses

fAt) =f(t) 2: 8(t - KT)
K.-fIO

(3)

Eq. (7) states that the Fourier spectrum of a sampled version
of f(t) is a periodic function of w with a period of w,. Each
period is simply a copy of each other, as shown in Fig. 2(b).
It is obvious that when w, is greater than twice the highest
frequency components Wo in f(t), there would be no overlap-

(8) Spectrum of original
function 1P(j0»)1

---------1--+:----'-------_0)
-0)0 lIlO

(b) Spectrum of sampled
function without
aliasing

-1---....L....----1-1----+----''--1----I-----'........-0)

in which 8(t - KT) is a Dirac delta function defined as fol­
lows:

8(t - KT) =0, t ¢ KT; i~ 8(t - KT) dt =1 (4)

As a periodic function with a period T = 2-rr/w" the infinite­
duration train of Dirac delta functions in Eq. (3) can be
expressed by the following Fourier series:

(c) Spectrum of sampled
function with aliasing

----L---'---L..L--+--.........'----'---"'---_O)
mo

FIG. 2. Fourier Spectra of Band-Llmlted Contlnuou. Function
and Ita DI.crete Sample.

FIG. 1. lIIu8tration of Sampling Proce88

IFGm)l

I&Gm)1

dl!m,<m,<m.-.. )
- .. ~xm

IFdGm)1 r
-1..__1-_.....1...._

---''---'--.....L..L......,o::+-~.L....+-.1.__m

FIG. 3. Recon8tructlon of Contlnuou. Function by Ideal Low·
Pa.. Filtering

~t)

ll(t)
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where

h(l)

'1JD,I0>.

-NTI2 NTI2

FIG. 4. TruncatIng Impul.. Reapon.. by WIndowIng

ping among the periods, and each period simply contains a
shifted and scaled version of the Fourier spectrum of the orig­
inal function /(t). Hence, the Fourier spectrum of /(t), there­
fore, /(t) itself, can be reconstructed by passing /d(t) through
an ideal low-pass filter with a scaling factor T and a cutoff
frequency We greater than Wo but less than w, - wo, as shown
in Fig. 3. It can be seen that T < -rrlwo is an inherent require­
ment for complete recovery of a continuous function from its
equally spaced samples. If this condition is not satisfied,
aliasing (evidenced by the overlapping as shown in Fig. 2c)
occurs and no algorithm can cure it.

The filtering process can be described as

F(jw) =FAjw)Hr(jw) (8)

difference methods that only approximate the derivatives at
discrete points). Like the interpolator, the differentiator may
also be viewed as a frequency filter whose transfer function,
from the properties of Fourier transform, is

H ( 'w) ={jWT Iwl < We (14)
D J 0 We < Iwl

It can be seen that the differentiator has the same cutoff fre­
quency We as the one for the interpolator, implying that the
differentiator does not respond to measurement noise in the
frequency band beyond We' In other words, (12) performs dif­
ferentiation and noise filtering simultaneously, which is a wel­
come feature for this type of operation.

However, there is one problem in implementing these ideal
filters. It can be seen from (11) and (12) that the interpolator
and the differentiator are both noncausal, Le., calculating the
current value of /(t) or df(t)ldt needs the information in the
future. An obvious solution for the problem is to approximate
these ideal filters by truncating their infinite-duration impulse
responses h(t) and dh(t)ldt to a finite duration and then to
handle a delayed version of the truncated functions. This is a
mature technique known as FIR (finite impulse response) fil­
tering that has long been used in digital signal processing (Op­
penheim and Schafer 1975).

Taking the interpolator as an example, for an impulse re­
sponse truncated to a duration of N· T, in which N is an in­
teger, one has

I+Nf2

f(t) - J(t) = L f(KT)h(t - KT) (15)
K-t-Nf2

where the superscript ..A" stands for an approximation; I =
integer part of tIT. Substituting T =t - N· TI2 into the pre­
ceding equation yields

J(T) =J (t - NT) =±f(KT)h (t - NT - KI') (16)
2 K-t-N 2

Eq. (16) is a delayed version of (15). It can be seen that if
the samples are available up to t, then l(t - NT12) can be
calculated from the available samples.

The methods commonly used in FIR filter design for gen­
erating a finite-duration impulse response to approximate an
ideal response include windowing, frequency sampling, and
other computer-aided approaches. A discussion on these meth­
ods is beyond the scope of this paper, readers may refer to
Oppenheim and Schafer (1975) for further details. In this text
only the windowing method will be introduced for its sim­
plicity in concept and design.

As shown in Fig. 4, a truncated impulse response f,(t) can
be viewed as the product of the original infinite-duration re­
sponse h(t) and a window function w(t)(11)

S(t)

'1JD, /0>.

W(t) }r -NTI2 NTI2

I.. NT .1

= 2: f(KT)h(t - KT)
K_-oc

H('W)={T Iwl<we (9)
r J 0 We < Iwl

is the transfer function of the ideal low-pass filter with a scal­
ing factor T and a cutoff frequency We' The impulse response
of the filter is the inverse Fourier transform of the transfer
function, [(9)], i.e.,

1 f" T fW' "" 2 sin weth(t) =- Hr(jw)eJw'dw =- eJ dw = (10)
2-rr _.. 2-rr -w, w,t

This function is plotted in Fig. 4(a), which is symmetric about
t = 0 and extends infinitely in both positive and negative t
coordinates.

By the convolution theorem in calculus, one has

f.. ~ 2 sin we(t - KT)
f(t) = _.. fd(T)h(t - T) dT =K~" f(KT) w,(t - KT)

(17)f,(t) =h(t)· w(t)

in which

w(t)"# 0, -N·T/2 < t < N'T/2; w(t) =0, otherwise (18)

where N· T =duration of the truncated impulse response.
By the theorem of convolution, the transfer function of a

windowed filter in the Fourier domain is

(12)

Eq. (11) serves as an interpolator for exact reconstruction
of a band-limited continuous function f(t) from its equally
spaced samples. With (11), one may directly obtain the first
derivative of f with respect to t as follows:

df =±f(KT) dh(t - KT)
dt K--" dt

in which

has a limit 0 at t = O. Eq. (12) serves as a differentiator that
yields exact first derivatives of a band-limited continuous
function f(t) with respect to t from its equally spaced samples.
Note that the derivative is expressed as a continuous function
of t and may be evaluated for any given t (compare with finite-

(19)
dh(t) (2wjw,)cos wet - h(t)
dt"= t (13) h(jw) =..!. H(jw)*W(jw)

2-rr

in which "*,, =convolution operator; H(jw) =transfer func­
tion of the filter before windowing; and W(jw) = Fourier trans­
form of the window function w(t).

The simplest window is a rectangular one, wr(t), expressed
by
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FIG. 5. Transfer Function of Rectangular-Windowed Ideal
Low-Pass Filter

(b)

_..-:;:.::..:....__¥-__---L~_ Ol

(a)

-'--orrJ..J..8T---+----ltI8.LT~- Ol

Transfer Function of Blackman Transfer Function ofBlackman
Wtndowed Interpolator, N..128 Windowed Diffi!renIlatcr. N.I28
(..... Ideal Interpolator, co. .. lti8T) (....... Ideal Differeatiator. Ol," ltI8T)

FIG. 6. Transfer Functions of Blackman-Windowed Interpola­
tor and Dlfferentlator

(c)

W,(jOl)

(b)

(a)

----',-+-.L--__ Ol

PROCEDURE

window is less than 0.2% of the main peak. In exchange, the
main lobe is widened to 12'TTINT.

Substituting (23), and (9) or (14) into (19) yields the transfer
fun.ction of a Blackman windowed FIR interpolator or differ­
entIator. As shown in Fig. 6, the ripples in both cases are small
within the passband the responses match the ideal filters al~
most exactly. This characteristic implies that, if the highest
frequency component in the continuous function is within the
passband, the original function and its first derivative can be
recovered from its samples in a nearly exact manner.

The load-displacement relationship L = L(D), as shown in
Fig. 7(a), is typical for construction materials including soil.
If the displacement D is considered as the dependent variable
t in t~e previous derivation, in principle one can apply the
sampling theorem and the relevant convolution techniques to
interpolate and differentiate the function L. However, as L is
only defined in a definite segment of D, there exist a least two
problems in implementation: (1) The convolution processes for
interpolation and differentiation, e.g., Eq. (16), need infor­
mation outside the target segment of interest; and (2) the dis­
continuity of L at the ends of the defined segment of D is
associated with high-frequency contents, which may increase
the bandwidth of L = L(D) and deteriorate the band-limited
condition (hereafter the term "frequency" in this paper is re­
ferred to as the changing rate of load with respect to displace­
ment rather than to time). To solve these problems, the follow­
ing approach is used in this study.

First, the function L(D) is decomposed into two functions,
one linear function and one nonlinear function that vanishes
at both ends of the defined segment of D as shown in Figs.
7(b) and 7(c) and is expressed as follows:

Wr(t) = 1, -N'T/2 < t < N'T/2; wr(t) =0, otherwise (20)

thus

W( ') f~ (t) -}"', d fNrI2 -}"', d sin(wNTI2)
r JW = wet = e t = (21)

_~ -NrI2 w/2

Wr(jw) is shown in Fig. 5(a), which has a main lobe of
width 4'TTINT at the center and gradually diminished side lobes
on both sides. From (19) and (21) one may calculate the trans­
fer function of a filter whose impulse response is truncated by
a rectangular window. Fig. 5 depicts this convolution process
for an ideal low-pass filter (interpolator). It can be seen that,
different from the ideal low-pass filter, the transfer function
resulting from rectangular windowing now inserts a transition
between passband and stopband. In addition to that, there are
also significant unwanted "ripples" found in both the pass­
band and stopband, particularly in the band surrounding the
transition. This characteristic is referred to as Gibbs phenom­
enon in calculus. Fig. 5 also shows that the width of the tran­
sition band depends on the width of the main lobe and the
ripples are due to the side lobes in Wr(jw). It can also be seen
from (21) that the width of the main lode and, thus, the width
of the transition band, can be effectively adjusted by changing
the window length NT. However, the amplitudes of the side
lobes are not adjustable. For a rectangular window function,
the maximum amplitude of the side lobes is about 21 % of the
m~n peak, which is considered unacceptable for most appli­
catIOns.

It is well-known in the theory of Fourier series that Gibbs
phenomenon can be reduced at the cost of a widened transition
band. An array of window functions aimed at achieving a good
balance between the main lobe width and ripple amplitude
have been proposed for FIR filtering, refer to Oppenheim and
Schafer (1975) for a description of various window functions.
The one used in this study is the well-known Blackman win­
dow given by

() {
0,42 + 0.5 cos 2'TTt + 0.08 cos 4'TTt -N' T/2:5 t:5 N· T/2

Wb t = NT NT'
0, otherwise

(22)

and

L(D) =L1(D) + (a + bD)

dL(D) dL1(D)
--=--+b

dD dD

(24)

(25)

whose transfer function is

tiT (.) 084 sin(wNT/2) (WNT)2. sin(wNT/2)
rYb JW = . + '"---'-::---"--~

W w· [4'TT2
- (wNTf]

_ 0.16 (WNT)2. sin(wNT/2)
w· [16'TT2

- (WNT)2] (23)

Because the side lobes of the superimposed components on
the right-hand side of (23) are partially canceled by each other,
the maximum amplitude of the side lobes of the Blackman

708/ JOURNAL OF ENGINEERING MECHANICS / JULY 1998

where b = slope of the linear function. Because L 1(D) is a
continuous function possessing a finite nonzero segment, it can
be converted into a periodic continuous function by alternately
cloning itself and its folded and inverted copies along the D
coordinate. Because the altered function in the target region
of D is the same as the original one, all of the properties of
L1(D) including the derivatives in this region are retained.
However, because the periodic version of L1(D) is now defined
for all D values, the convolution calculation such as (16) can
be carried out straightforwardly. Also, because the disconti-
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200
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700

600
(b)

500

~400
~300
...J

200
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o 0.02 0.04 0.06 0.08 0.1
o (rad/em)

FIG. 7. Decomposition of Load-Displacement Function

NUMERICAL EXAMPLES

where the shear strain 'Y = R(9 + 90)/21 is defined at the pe­
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(27)
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~ 0.8
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~ 0.4

0?OOO1 0.001 0.01 0.1 10
Shear Strain 'Y (%)

FIG. 8. Modulus Reduction Curve. Used In Numerical Exam­
ples

0.2

The applications of the previously described technique are
illustrated by numerical examples for deriving the normalized
modulus reduction curve (G/Gm.. versus 'Y) from two types of
geotechnical tests: solid-cylinder torsional test and undrained
pressuremeter tests. Eqs. (I) and (2) are the interpretation
equations for the two types of tests.

Fig. 8 shows two normalized modulus reduction curves ap­
proximately following the ones proposed by Vucetic and
Dobry (1991) for soils of plastic index (PI) of 0 and 50%,
respectively. These two curves serve as the benchmark for
checking the accuracy of data interpretation. By assuming that
the change in soil stiffness depends solely on the material de­
formation, these two curves were first numerically converted
to a load-logarithm of displacement data pairs (T - log 9 and
p - log £c for torsional shear and pressuremeter tests, respec­
tively) as follows:

For torsional shear tests, (I) can be written as

iT 4L8 L8
In T - In To = dT = 271'R G('Y) d9 - 3 .!. d9

ToT 180 T 809

• Get load-displacement data pairs (e.g., T and 9) with in­
tervals equal in displacement or in logarithm of displace­
ment (log 9).

• Decompose the curve into a linear part and a nonlinear
part L1(D). [(24)], in which D is the displacement or the
logarithm of displacement (log 9), depending on the
scheme of sampling intervals.

• Convert L1(D) into a periodic function by alternately clon­
ing itself and its folded and inverted copies along the D
coordinate.

• Carry out differentiation by convoluting the periodic func­
tion with a windowed differentiator [(13) windowed by
(22)] over the original half period of D.

• Compose dT/d(D) using (25).
• Convert dT/d(log 9) into dT/d9 by (26) if D = log 9.

nuity at the ends of the original L1(D) disappears, the high­
frequency contents associated with this discontinuity also dis­
appear.

For some nonlinear materials the material stiffness is con­
ventionally plotted against the logarithm of strain for better
visualizing the nonlinear stress-strain relationship. For exam­
ple, the normalized shear modulus (G/Gm..) of soil is almost
unanimously plotted against the common logarithm of shear
strain (log 'Y) by geotechnical engineers. Correspondingly, in
tests of these nonlinear material, the data acquisition system
can be conveniently programmed in such a way that the re­
corded data are presented with sampling intervals equal in
terms of the logarithm of displacement, and the derivatives of
load with respect to displacement can be easily converted from
the derivatives of load with respect to the logarithm of dis­
placement. For example, the derivative of T with respect to 9
in (l) is equal to

dT( I) dT (I) dT
d9 = 9 'In 10 .d(log 9) = 2.3026' 9 .d(log 9) (26)

For load-logarithm of displacement pairs of equal intervals, by
treating log 9 as the dependent variable, the method of cal­
culating derivatives as described in the previous section is ap­
plicable.

In summary, the following steps are taken to calculate the
derivatives of load with respect to displacement:
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FIG. 10. Modulus Reduction Curves Recovered from Nol...
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FIG. 11. Additive Noise Sequences and AmplitUde Spectra

overlaps the load-displacement spectra, which implies that,
once it is mixed with the load-displacement data, no filter can
completely remove the noise from the latter. Numerical tests
using this type of noise can show the influence of this "in­
band" noise on the differentiation. For the type 2 noise, most
parts of the overlapping long period components have been
removed; therefore, the impact of this type of noise can be
reduced by the differentiator itself because it automatically fil­
ters out high-frequency contents, as shown in Fig. 6(b). Nu­
merical tests with this type of noise can be used to examine
the effectiveness of this filtering capability. As the effects of
noises added to load and to displacement are similar and con­
vertible from each other (!1L - [dUdD]' AD), for simplicity,
the noises were added to the load samples only in this study,
and the peak-to-peak amplitudes of the noises were adjusted

~ 0.8

~

0.8

(28)

lE·l

lE.l
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FIG. 9. Load-Displacement Curves In Numerical Examples

riphery of the sample averaged over the current loading step
from eo to e; To and T = torque values corresponding to eo
and e, respectively; and t = (T + To)/2 = torque value aver­
aged over the current loading step. Starting from an arbitrarily
small eo, where shear modulus G is independent of shear strain
'Y and the corresponding To calculated based on linear theory,
one can recursively use (27) to calculate T - log epairs over
the entire range of strain. In this study the loading step sizes
were refined until no improvement could be seen in the T ­
log e plots. The calculated T - log e curves for PI = 0 and
50% are shown in Fig. 9(a)

For pressuremeter tests, (2) can be rewritten to

i
p iE, 4'G('y) dE

p= dp =
o 0 (1 + Ee)' (2 + EC> e

600 (b) Pressuremeter

I:I~I
ll. 200

100

800,-----------------,
700 (a) Torsional Shear

with 'Y = 2£e, numerical integration can be carried out to obtain
the p - log £e pairs. Similar to the procedure used for T ­
log e pairs, the integration step sizes were refined until no
improvement could be seen. The calculated p - log £e curves
for PI = 0 and 50% are shown in Fig. 9 (b).

With 64 pairs of discrete load-displacement samples for
each of the curves covering a range of shear stains from -10-3

to 10%, the steps described in the previous section were fol­
lowed to recover the normalized modulus reduction curves. In
the calculation the window length N = 1024 [(22)] was used,
and the cutoff frequency We [(10) and (13)] was chosen to be
Y4 of w,. The original and the recovered curves are plotted
together in Figs. 10(a) and lO(b) for the torsional shear and
pressuremeter tests, respectively. From the figures it can be
seen that the recovered curves are virtually identical to their
original counterparts. This verifies the principle and the pro­
cedure elaborated earlier.

While the interpretation for the modulus reduction curves
was successful for noise-free load-displacement samples, its
performance for noise-contaminated data must be examined.
In this study, two types of additive noise were tested: (1) A
sequence of random numbers generated by computer using
RANDOM function, this sequence bears the characteristics of
white noise; and (2) a colored noise obtained by high-pass
filtering the computer generated white-noise-like sequence.
The filter used was an eighth-order Butterworth filter with a
normalized cutoff frequency -rr/4 (lIs of sampling frequency).
The noise sequences and their Fourier amplitude spectra are
shown in Fig. II. It can be seen that the type I noise covers
the entire band (up to Nyquist frequency); therefore, it surely
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noise-added load-displacement sequences. In principle, under
the condition that the significant frequency contents of the
load-displacement curve are retained, one would like to see
We be as low as possible so that the noise would be maximally
eliminated. It can be seen that the curves recovered from the
data contaminated by the type 1 noise are in good agreement
with the original curves at shear strains higher than 10-2% for
PI =0% and higher than 10-1% for PI =50%; and the curves
derived from the data with the type 2 noise are good for shear
strains higher than 2 X 10-3% for PI =0% and higher than
10-2% for PI = 50%. These results show that the proposed
procedure performs well in the medium-to-high strain range,
where soils exhibit severe nonlinearity and the data interpre­
tation based on linear elasticity becomes invalid.

While the characteristics and the impact of the measurement
noise may vary from case to case, it is apparent that, in the
very low strain range, the proposed method of differentiation
may yield unsatisfactory results. However, the tests that di­
rectly measure load and displacement in a wide range of
strains generally yield less reliable data at small strains, ren­
dering the interpretation of small strain test data from such
tests less important. For reliable small strain data, alternative
tests such as laboratory resonant column tests (Wilson and
Dietrich 1960; Drnevich et al. 1967) and geophysical tests
(Stokoe and Woods 1972; Woods and Henke 1979; Stokoe and
Nazarian 1985) should be carried out as a supplement. By
combining the reliable small strain modulus Gnw< and the mod­
ulus reduction curve in the medium-to-high strain range, one
may easily fill the gap between them either visually or using
an analytical expression. In cases where the load-displacement
(L - D) data at low strains are reliable (Le., systematic error
is low), but a little noisy, one may consider smoothing the data

0.1 1
Shear Strainy (%)

FIG. 14. Modulus Reduction Curves Recovered from Load­
Displacement Samples Contamlnatec:l by RANDOM Generated
"White" Nol..
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FIG. 13. Load-Displacement Curves with Type 2 Nol..

to 4% of the maximum load. Figs. 12 and 13 show the load­
displacement curves contaminated by the type 1 and type 2
noises, respectively. The scattering caused by the two noises
are visually similar.

The normalized modulus reduction curves recovered from
the noise-contaminated data are shown in Figs. 14 and 15. In
the simulations the window length N = 1024, the cutoff fre­
quency We for the data with type I noise was 1/24 of W., and
for those with type 2 noise was 1/12 of W S' The choice of these
cutoff frequences was based on the spectral characteristics of
the data and noises estimated from the Fourier spectra of the
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SUMMARY

ness. The procedure was then tested for load-displacement rec­
ords contaminated by additive noises of different spectral char­
acteristics. It shows that when the noises are present, the
procedure works well in the medium-to-high strain range,
where a valid nonlinear interpretation procedure becomes nec­
essary.

In conclusion, the procedure presented in this paper pro­
vides an alternative way for interpreting certain types of ma­
terial testing. Together with separate small strain tests, this
method may yield strain-dependent material stiffness over a
wide range of strains, without curve-fitting to a preassumed
analytical expression.

The first writer wishes to acknowledge the financial support received
from the California Department of Transportation through Grant No.
F92TL05 in the early stage of this work.
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The interpretation of nonlinear stress-strain behavior of a
material loaded under nonuniform strain fields may require
differentiating the load-displacement curve constructed from
experimental data. Differentiating experimental data is tricky
because the data are usually discrete and noise contaminated.
In this paper a procedure for differentiating discrete load-dis­
placement data is presented. The procedure is based on clas­
sical sampling theorem and modern digital signal processing
techniques. It performs true differentiation and noise filtering
simultaneously. Following a brief description of the method­
ology and its underlying theory, applications for two types of
geotechnical tests (solid cylinder torsional shear and undrained
pressuremeter tests) are given for demonstration. The numer­
ical examples show that if the load-displacement records are
noise free, the procedure yields nearly exact derivatives of load
with respect to displacement in both cases, resulting in almost
perfect interpretations for the strain-dependent material stiff-

by low-pass filtering (e.g., using the windowed interpolator
introduced in this paper), and then to approximate dUdD by
liD for the low strains, because when strain is low, the ap­
proximately linear and homogeneous relationship gives dlidD
-liD.
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