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How distribution characteristics of a soil property affect
probabilistic foundation settlement — from the aspect of the
first four statistical moments
Yongxin Wu, Yufeng Gao, Limin Zhang, and Jun Yang

Abstract: The effects of the first four statistical moments defining the statistical characteristic of elastic modulus on the
probabilistic foundation settlement are investigated in this study. By combining the Hermite probability model and spectral
representation method, a method to simulate nonGaussian homogenous fields based on the first four statistical moments is
proposed. Linear elastic finite element models are employed to study the total settlement and the differential settlement of a
shallow foundation. Probabilistic measurements of total–differential settlement obtained by the Monte Carlo simulations are
presented. For the cases considered, the effects of skewness and kurtosis defining the probabilistic characteristic of elastic
modulus on the total–differential settlement of a probabilistic foundation are illustrated. The computed results show that the
value of skewness has a more significant effect on the probabilistic foundation settlement than kurtosis, and the case with the
smallest skewness is observed as the most critical one.

Key words: random field, spectral representation method, soil variability, foundation settlement, differential settlement, Monte
Carlo.

Résumé : Les effets des quatre premiers moments statistiques définissant la caractéristique statistique du module d’élasticité sur
le tassement probabiliste des fondations sont étudiés dans cette étude. En combinant le modèle de probabilité de Hermite et la
méthode de représentation spectrale, une méthode de simulation du champ homogène non gaussien basée sur les quatre
premiers moments statistiques est proposée. Des modèles élastiques linéaires par éléments finis sont utilisés pour étudier le
tassement total et le tassement différentiel d’une fondation peu profonde. Les mesures probabilistes du tassement total–
différentiel obtenues par les simulations de Monte Carlo sont présentées. Pour les cas considérés, les effets de l’asymétrie et de
l’aplatissement définissant la caractéristique probabiliste du module d’élasticité sur le tassement total-différentiel d’une fonda-
tion probabiliste sont illustrés. Les résultats calculés montrent que la valeur de l’asymétrie a un effet plus important sur le
tassement probabiliste des fondations que l’aplatissement, et le cas de la plus petite asymétrie est considéré comme le plus
critique. [Traduit par la Rédaction]

Mots-clés : champ aléatoire, méthode de représentation spectrale, variabilité du sol, tassement des fondations, tassement
différentiel, Monte Carlo.

1. Introduction
Soil properties always exhibit considerable spatial variation be-

cause soils are always formed in different physical and chemical
conditions. This spatial variation brings uncertainties in the esti-
mation of soil parameters. The uncertainties arise from several
sources such as inherent soil variability, measurement errors, and
model transformation uncertainties (Phoon and Kulhawy 1999).
Furthermore, when the failure mode of the involved geotechnical
problem is considered, additional uncertainties hidden in quanti-
ties in the calculation models exist (Rackwitz 2000). The theory of
random fields is traditionally applied to define the spatial variabil-
ity of soil properties by introducing correlation models.

In the last decade, with the aid of high-speed computers, the
effects of stochastic soil properties on various problems in geome-
chanics were assessed. For instance, a series of studies investigated
the effects of spatial variability of soil properties on settlements of
foundations (Fenton and Griffiths 2002, 2005; Liu et al. 2015), on

the bearing capacity of shallow foundations (Griffiths and Fenton
2001; Griffiths et al. 2002; Fenton and Griffiths 2003; Popescu et al.
2005a; Cho and Park 2010; Li et al. 2015; Wu et al. 2019), on the
stability of slopes (Sivakumar Babu and Mukesh 2004; Griffiths
and Fenton 2004; Griffiths et al. 2009; Srivastava and Babu 2009;
Cho 2010; Zhang et al. 2013, 2018; Li et al. 2014, 2016, 2018; Jiang
et al. 2015; Zhu et al. 2017; Ji et al. 2019), on soil liquefaction
(Popescu et al. 1997, 2005b), and on the seismic site response
(Rathje et al. 2010; Bradley 2013; Johari and Momeni 2015). These
studies illustrate the importance of considering the spatial vari-
ability of soil properties in geotechnical design. In particular, by
considering the spatial variability of soil properties, the reliability
of geotechnical designs is increased. Furthermore, failure modes,
such as nonsymmetric failure modes and differential settlements,
which cannot be observed under the assumption of homogeneous
soil, can be identified by considering the spatial variability of soil
properties.
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The settlement of foundations is a classical geotechnical subject
with considerable interest, and the effects of spatial variability of
soil properties on settlements also attracted wide attention as
aforementioned. The problems of total–differential settlements
of shallow foundations on spatially varying soil have been investi-
gated by many methods, such as analytical method (Frantziskonis
and Breysse 2003), the stochastic finite element method (Baecher
and Ingra 1981; Brząka�a and Pu�a 1996), the stochastic integral
formulation method (Zeitoun and Baker 1992), and the Monte
Carlo simulation (MCS). Among these methods, the MCS is one of
the most widely used. To study the settlement of shallow founda-
tions, several authors have discussed the effect of variability of
elastic modulus on the settlement results by considering the in-
fluence of the mean value, the standard deviation, and scale of
fluctuation. While two-dimensional (2D) models have been applied
in most cases, Fenton and Griffiths (2005) studied the probability
distribution of total settlement and differential settlements by using
a fully three-dimensional (3D) model.

When investigating the effects of spatial variability of soil prop-
erties on settlements, it is generally assumed (but not always) that
the parameter of elastic modulus follows the lognormal distribu-
tion, which is mathematically convenient and can avoid produc-
ing negative values of soil properties. However, based on several
studies reported in the literature, soil properties can follow dif-
ferent probability distributions for different types of soils and
sites (Wang et al. 2015). Furthermore, Popescu et al. (2005a) dem-
onstrated that the distribution type of the soil shear strength has
a considerable influence on the bearing capacity of foundations.
Similarly, Zhou et al. (1999) showed that the distribution type of
the coefficient of radial consolidation has a significant impact
on the consolidation results. In addition, Jimenez and Sitar (2009)
investigated the effects of the distribution type characterizing the
spatial variability of Young’s modulus on the settlement of shal-
low foundation, and found that the distribution type of elastic
modulus have a significant impact on the computed settlement
results. In all, the distribution type of soil properties should be
considered when conducting the reliability analysis for geotech-
nical design. However, how the distribution characteristic affects
the probabilistic settlement has never been studied.

In practical applications, the probabilistic density function (PDF),
or equivalently the cumulative distribution function (CDF), of soil
properties may be difficult to obtain. Recently, Bayesian methods
have been developed to address this issue by integrating limited
measurement data with prior knowledge (Wang and Cao 2013;
Wang et al. 2016; Cao et al. 2016). Generally, the probabilistic
characteristic of soil properties can be easily expressed by the statis-
tical moments, which can be obtained from the measured data
(Zhao and Lu 2006). In this study, the effects of the first four
statistical moments to define the probabilistic characteristic of
soil properties on the total–differential settlements of shallow
foundations are investigated, and the way how the third moment
and fourth moment work on the probabilistic settlements is illus-
trated.

The remaining portion of this paper is organized as follows. In
the following section, the method to simulate nonGaussian ho-
mogenous fields based on the first four statistical moments is
proposed by combining the Hermite probability model (HPM) and
spectral representation method (SRM). Then, the finite element
models employed to investigate the total settlement and the dif-
ferential settlement of a shallow foundation are presented. In the
finite element models, the random fields of elastic modulus are
simulated by the proposed method. Finally, the results of founda-
tion settlements computed by the MCSs are discussed, and the
effects of skewness and kurtosis defining the probabilistic char-
acteristic of elastic modulus on probabilistic foundation settle-
ments are illustrated.

2. Simulation of nonGaussian homogeneous fields
based on first four statistical moments

Several methods such as the midpoint method (Der Kiureghian
and Ke 1988), the local average subdivision (LAS) method (Fenton
and Vanmarcke 1990), the shape function method (Liu et al. 1986),
turning bands methods (TBM) (Matheron 1973), the Karhunen–
Loève (KL) expansion (Phoon et al. 2002), the SRM (Popescu et al.
1998), and the linear estimation method (Liu et al. 2014) can be
used to discretize the random field. Fenton (1994) systematically
investigated the characteristics of three common random field gen-
erators (i.e., SRM, TBM, and LAS), and gave a number of useful and
helpful guidelines and suggestions to choose the algorithm in the
application. In this study, the SRM, which has been proved to
provide a better accuracy in terms of autocorrelation function and
lower order moments (Stefanou and Papadrakakis 2007), is em-
ployed.

The SRM is one of the most widely used methods in the simu-
lation of random processes as well as random fields. Given that
this part mainly focuses on simulation of random fields, the
following representative papers related to simulating random
fields based on the SRM are mentioned here. The SRM was estab-
lished by Yaglom (1962) and Shinozuka and Jan (1972) for the
simulation of one-dimensional (1-D), univariate formulation and
extended by Shinozuka and Deodatis (1996) to simulate multi-
dimensional Gaussian random fields. With regard to simulating
nonGaussian random fields, Yamazaki and Shinozuka (1988) firstly
proposed an iterative method based on the SRM to simulate 1-D
nonGaussian random fields by the translation process theory.
Popescu et al. (1998) extended Yamazaki and Shinozuka’s method
to simulate multi-variate, multi-dimensional, nonGaussian random
fields. Recently, Wu et al. (2017) proposed a simple and efficient iter-
ative scheme to simulate multi-variate, multi-dimensional, non-
Gaussian random fields based on the SRM. In this paper, the basic
idea of the simple and efficient iterative scheme is used and com-
bined with the theory of HPM to simulate random fields defined
by the given autocorrelation function and the first four statistical
moments. For simplicity, the method to simulate a 2D homoge-
neous nonGaussian random field will be described herein. In fact,
the following method can easily be extended to the 3D case.

Consider a 2D homogeneous nonGaussian random field y(x, z),
which is completely defined by autocorrelation function �NG(�x, �z),
where �x and �y are the distance in horizontal and vertical
directions, respectively, and the first statistical moments (i.e.,
mean value �f, standard deviation �f, skewness, and kurtosis).
Without loss of generality, y(x, z) can be standardized to
ȳ�x, z� � �y�x, z� � �f�/�f, which is with zero mean value and unit
variance.

2.1. Hermite probability model (HPM) based on first four
statistical moments

The Hermite polynomial function is an adequate model to trans-
late the underlying standard Gaussian field ḡ�x, z� to the target stan-
dard nonGaussian field ȳ�x, z� (Grigoriu 1984). For a 2D random
field, the transformation based on the Hermite polynomial is

(1) ȳ(x, z) � k{ḡ(x, z) � c[ḡ(x, z)2 � 1] � d[ḡ(x, z)3 � 3ḡ(x, z)]}

where

(2) k �
1

�1 � 2c2 � 6d2

In eq. (1), k is a scaling factor that ensures unit variance of
ȳ�x, z�. The coefficients c and d can be determined by the pre-
scribed skewness (Sk) and kurtosis (Ku) according to the following
relationships (Gurley et al. 1997):
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(3) Sk � k3(8c3 � 108cd2 � 36cd � 6c)

(4) Ku � k4(60c4 � 3348d4 � 2232c2d2 � 60c2 � 252d2

� 1296d3 � 576c2d � 24d � 3)

To obtain the values of c and d in eq. (1), the set of nonlinear
equations aforeshown can be solved through numerical iteration
or closed form approximate solution given by Yang et al. (2013).
When the translation parameters c and d are determined, the PDF
of the target standard nonGaussian field f̄�x, z� is given by (Yang
and Gurley 2015)

(5) fY(y) �
1

�2	
exp��u2(y)

2
�du(y)

dy

where

(6) u(y) � [��2(y) � r � �(y)]1/3� [��2(y)�r � �(y)]1/3�a

(7) �(y) � 1.5
1

3d� c
3d

�
y
k� � � c

3d�3

(8) r � � 1
3d

� � c
3d�2

� 1�3

and u and r are two intermediate variables as utilized in the right
part of eqs. (5) and (6), respectively.

The HPM is very robust over a wide range of values for skewness
and kurtosis, exhibiting even strongly nonGaussian behavior (Yang
et al. 2013). It was found that many PDFs (e.g., lognormal distribu-
tion) can be approximated by the HPM probability models accord-
ing to the corresponding skewness and kurtosis. It means that,
the HPM can be considered as a potential probability model for
any process–field with skewness and kurtosis values within the
admissible range.

2.2. Simulation of 2D homogeneous Gaussian fields
For a 2D homogenous Gaussian field g(x, z), its correlation struc-

ture can be defined by its autocorrelation function �G(�x, �z). By
using the 2D version of the Wiener–Khintchine transform, the
target Gaussian power spectral density (PSD) function can be ob-
tained

(9) SG(
x, 
z) �
1

(2	)2
	

�∞

�∞ 	
�∞

�∞

�G(�x, �z)e
�i(
x�x�
z�z) d�x d�z

where �x and �z are the distance in horizontal and vertical direc-
tions, respectively; and 
x and 
z are the wave numbers in hori-
zontal and vertical directions, respectively.

For random fields of soil properties, the PSD function at eq. (9)
is symmetric with respect to the origin

(10) SG(
x, 
z) � SG(
x, �
z) � SG(�
x, 
z) � SG(�
x, �
z)

Then, samples of the 2D homogeneous Gaussian field can be sim-
ulated by the following series:

(11) g(x, z) � 

l1�0

N1�1



l2�0

N2�1

�SG(
xl1
, 
zl2

)�
x�
z

× �cos�
xl1
x � 
zl2

z � � l1 l2
1 � � cos�
xl1

x � 
zl2
z � � l1 l2

2 ��

where

(12) 
xli
� li�
x 
zli

� li�
z li � 0, 1, …, Ni � 1

(13) �
x � 
xu/N1 �
z � 
zu/N2

and 
xu and 
zu are the upper cut-off wave numbers in the direc-
tion x and z, respectively. N1, N2 are the number of points used for
the discretization of the PSD function along the x and z axes, �
x

and �
z are the discretization steps in the wave number domain.
�l1l2

1 and �l1l2
2 are two sets of N1N2 independent random phase angles

uniformly distributed over the interval [0, 2	].
According to the central limit theorem, the simulated random

fields are asymptotically Gaussian as N1 and N2 approaching infin-
ity simultaneously. In addition, the fast Fourier transform (FFT)
technique can be applied to simulate the random field with high
efficiency.

2.3. NonGaussian translation field theory
The basic idea of nonGaussian translation field theory is that a

homogeneous nonGaussian field can be obtained through nonlin-
ear transformation of a homogeneous Gaussian field (called “un-
derlying Gaussian field”). The method was introduced by Grigoriu
(1984) and has been applied to 1-D fields. In this paper the same
approach was applied to a multi-dimensional field.

The Hermite polynomial function is an adequate model to trans-
late the underlying standard Gaussian field ḡ�x, z� to the target stan-
dard nonGaussian field ȳ�x, z�. A 2D nonGaussian random field can
be mapped from an underlying standard Gaussian field ḡ�x, z� based
on the transformation shown in eq. (1). As this is a nonlinear
transformation, the correlation structure of the random field will
be changed. By using the transformation field theory, the relation-
ship between the nonGaussian autocorrelation function �NG(�x, �z)
and the Gaussian autocorrelation function �G(�x, �z) can be explic-
itly expressed as (Yang and Gurley 2015)

(14) �NG(�x, �z) � k2[�G(�x, �z) � 2c2�G
2 (�x, �z) � 6d2�G

3 (�x, �z)]

It has been observed that the autocorrelation and marginal
distribution of translation fields cannot be both prescribed arbi-
trarily, because such pairs may be incompatible. It means that,
for an arbitrarily given pair of PSD function (or equivalently auto-
correlation function) and nonGaussian PDF (or the first four sta-
tistical moments), it is impossible to estimate an exact underlying
Gaussian PSD function. Several reasons cause this “incompatibil-
ity” as summarized by Shields et al. (2011), Shields and Deodatis
(2013), and Wu et al. (2018). However, for practical applications it is
usually possible to find a translation field that approximates
very well any prescribed incompatible pair. In the following
section, the iterative scheme to find the underlying PSD function
will be discussed in detail.

2.4. Simulation of 2D homogeneous nonGaussian fields
To simulate a standard homogeneous non-Gaussian random

field ȳ�x, z�, the classic SRM and nonGaussian translation field
theory were combined. The flowchart of the method is shown
in Fig. 1, and the general steps of the simulation method can be
summarized as

1. Estimate an underlying Gaussian PSD function of the standard
Gaussian field.

2. Simulate an underlying Gaussian random field using the esti-
mated underlying Gaussian PSD function through the SRM
presented in eq. (11).

3. Translate the underlying standard Gaussian random field to a
standard nonGaussian random field through eq. (1).
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Fig. 1. Flowchart of proposed method to simulate nonGaussian random field. gmin, solution for ȳ�x, z� � �1/Covy in eq. (1).
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4. Map the standard nonGaussian random field into the desired
nonGaussian random field by using y�x, z� � ȳ�x, z��f � �f.

In the aforementioned steps, the key point is to estimate the
underlying Gaussian PSD function. Once the underlying Gaussian
PSD function is determined, the samples of the target nonGauss-
ian random field can easily be obtained by utilizing the SRM and
translation theory. For this purpose, the iterative scheme to find
an approximate underlying Gaussian PSD function proposed by
Shields et al. (2011) and Shields and Deodatis (2013) can be easily
introduced into this method as follows.

The general steps of the proposed iterative scheme for estimat-
ing the underlying Gaussian PSD function are described in detail
as follows.

1. Initialize the underlying Gaussian PSD function — In the iterative
scheme, the first step is to provide an initial guess for the
underlying Gaussian PSD function. To get a high convergence
rate, it is recommended to assume that the initial underlying
Gaussian PSD function SG

�0��
x, 
z� is equal to the target non-
Gaussian PSD function SNG

T �
x, 
z�.
2. Compute Gaussian autocorrelation function — At iteration (i), the

Gaussian autocorrelation function �G
�i���x, �z� can be obtained

from the Gaussian PSD function SG
�i��
x, 
z� through the 2D

Winner–Khinchine equation

(15) �G
(i)(�x, �z) � 	

�∞

�∞ 	
�∞

�∞

SG
(i)(
x, 
z)e

i(
x�x�
z�z) d
x d
z

where superscript (i) indicates the ith iteration of the algo-
rithm.

3. Computer nonGaussian autocorrelation function — Once the Gaussian
autocorrelation function �G

�i���x, �z� is given, the corresponding
nonGaussian autocorrelation function �NG

�i� ��x, �z� can be obtained
through the translation filed theory (shown in eq. (14)).

4. Compute nonGaussian PSD function — The nonGaussian PSD func-
tion SNG

�i� �
x, 
z� is determined from the nonGaussian autocorrela-
tion function �NG

�i� ��x, �z� by means of the inverse version of 2D
Wiener–Khintchine transform (shown in eq. (9)).

5. Check relative errors of nonGaussian PSD function — At each iteration,
to decide whether the iteration will be ended or not, a conver-
gence criterion should be checked. The error measures the
discrepancy between the computed nonGaussian PSD func-
tion SNG

�i� �
x, 
z� and the target nonGaussian PSD function
SNG

T �
x, 
z� is defined as

(16) (i) �

	
�∞

�∞ 	
�∞

�∞

�SN
T(
x, 
z) � SN

(i)(
x, 
z)� d
x d
z

	
�∞

�∞ 	
�∞

�∞

SN
T(
x, 
z) d
x d
z

When the error stabilizes or becomes small enough (e.g., for
2D cases 1% usually yields good accuracy), the current under-
lying Gaussian PSD function is saved. Otherwise, the upgrad-
ing of underlying Gaussian PSD function SNG

�i� �
x, 
z� should be
performed.

6. Upgrade underlying Gaussian PSD function — The underlying
Gaussian PSD function SNG

�i� �
x, 
z� is upgraded by

(17) SG
(i�1)(
x, 
z) � �SN

T(
x, 
z)

SN
(i)(
x, 
z)

��

SG
(i)(
x, 
z)

where � is selected to optimize the convergence rate. After up-
grading, the new Gaussian PSD function SNG

�i�1��
x, 
z� is obtained,

and it is positive definite. However, the variance of the underly-
ing Gaussian PSD function may be changed. Thus, the estimated
Gaussian PSD function SNG

�i�1��
x, 
z� should be normalized by

(18) SG
N(i�1)(
x, 
z) �

SG
(i�1)(
x, 
z)

	
�∞

�∞ 	
�∞

�∞

SG
(i�1)(
x, 
z) d
x d
z

where the superscript “N” denotes the normalization.

2.5. Avoiding negative values
For many random fields defining soil properties (e.g., elastic

modulus and untrained shear strength), the value of these ran-
dom fields should be positive. However, as the target PDF is de-
fined by eq. (5), which allows the appearance of values from
negative infinite to positive infinite theoretically, the method pro-
posed abovecannot ensure all the samples of the simulated fields
take on a positive value. To ensure the positive value of the simu-
lated sample fields, the following scheme is proposed.

For a random field y(x, z) with a coefficient of variation (Cov)
Covy = �y/�y, to make sure all sample fields have positive values,
the minimum value of the standard field ȳ�x, z� (standardized by
ȳ�x, z� � �y�x, z� � �y�/�y) should be larger than −1/Covy. According
to the relationship shown in eq. (1), the minimum value of the
standard field ḡ�x, z� should be larger than gmin, which is the so-
lution for ȳ�x, z� = −1/Covy in eq. (1). It means that, the generation of
positive samples will, in turn, require the preliminary generation

Fig. 2. Geometry of model: (a) single footing; (b) two footings.
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of standard Gaussian samples whose minimum value is larger
than gmin. To generate such a standard Gaussian sample, the basic
idea of generation truncated Gaussian samples can be applied.
The ideal is that, when the value of the sample is smaller than
gmin, one must randomly generate a new number that follows
standard Gaussian distribution and is larger than gmin. Then the
positive value of samples of the described random fields can be
guaranteed. In fact, for small value of gmin, this scheme has little
influence on the prescribed characteristic (e.g., autocorrelation
function, and the first four statistical moments) of the target ran-
dom field.

3. Finite element model
Now, probabilistic measures of total settlement and differential

settlement are presented. Because settlements are usually com-
puted using elasticity theory in typical foundation design, two 2D
linear elastic finite element models are employed to investigate
the total settlement and the differential settlement of a shallow
foundation with spatially random soil, respectively. The first
model is shown in Fig. 2a, in which a single footing is applied to a
soil layer to estimate the basic probabilistic behavior of total set-
tlement. In the second model, shown in Fig. 2b, the issue of differ-
ential settlements under a pair of footings is addressed. In both
models, the sizes of soil mass are the same, with 25.6 m in the
horizontal direction and 12.8 m in the vertical direction. To use
the FFT technique in the MCSs, the soil mass is discretized into 128
four noded quadrilateral elements in the horizontal direction by
64 elements in the vertical direction. For the single footing case,
the footing width is 4.8 m, and for the two footings case, the width
of footings is 2.8 m, and the distance between footings centers is
8.4 m. The design load(s) F applied on the top of the footing(s) are
set to be 300 kN.

In both cases, the footing(s) are considered to be rigid and have
a rough interface with the underlying soil. Rotations of founda-
tion(s) are not allowed, and it is assumed that there is no slipping
between the foundation and the underlying soil. Horizontal
movement is restrained on the side boundaries where only verti-
cal movement is allowed, while both horizontal and vertical
movements are restrained on the bottom of the soil body.

Because of elastic finite element models are used, only elastic
modulus and Poisson ratio should be given. A constant Poisson
ratio fixed at 0.25 is used in this study given that Poisson ratio has
a secondary influence on the results of settlement (Fenton and
Griffiths 2002). Elastic modulus E is considered to be spatially
random. The simulation method proposed in this study is applied
to generate the samples of random fields of elastic modulus E. A
squared exponential 2D autocorrelation function is applied to
define the spatial correlation of elastic modulus as follows (Jiang
et al. 2014):

(19) �(�x, �z) � exp���(�x/ lx)
2 � (�z/ lz)

2��

where lx and lz are the autocorrelation distances defining the de-
cay rates in the horizontal and vertical directions, respectively. In
this study, the assumption of isotropy is adopted, and the auto-
correlation distances in both directions are set to be 10 m.

To investigate the effect of skewness and kurtosis on probabi-
listic measures of settlements, the mean value of elastic modulus
E is set to be 10 MPa, and standard deviation of elastic modulus E
is fixed at 2 MPa, which means the value of Cov is 0.2. Although, it
may be more reasonable to model the mean value of elastic mod-
ulus with an increasing linear trend (Li et al. 2014), the random
field of elastic modulus is assumed to be stationary as done by

Fig. 3. Target PDFs of elastic modulus: (a) Sk = 0; (b) Sk = 0.5; (c) Sk = 1.0; (d) Sk = 1.5.

600 Can. Geotech. J. Vol. 57, 2020

Published by NRC Research Press



Fenton and Griffiths (2002, 2005). The involved target PDFs de-
fined by the HPM according to the value of skewness and kurtosis
are shown in Fig. 3. It is observed that the PDFs of the HPM cover
a wide range of scales by changing the values of Sk and Ku. It
should be mentioned that only nonnegative values of skewness
are considered because the PDFs of soil properties are usually
positively skewed or symmetrical (Popescu et al. 2005).

At this juncture, the capacity of the HPM to approximate the
lognormal distribution is demonstrated. The skewness and kurto-
sis corresponding to the prescribed lognormal distribution are
0.608 and 3.664, respectively. The lognormal distribution and
HPM probabilistic model according to the corresponding skew-
ness and kurtosis are plotted in linear scale and in semi-log scale
(as shown in Fig. 4), respectively. It is observed that the HPM
closely approximates the lognormal PDF. Furthermore, a simi-
larly good match can be found in many (but not all) other appli-
cations of PDFs. This demonstrates that the proposed method
based on the HPM is worthy of consideration even when the user
wishes to impart a specific target PDF rather than just the first
four statistical moments.

Based on coordinates of elements in the finite element models,
a series of realizations of random fields are generated to provide
values of elastic modulus by the proposed method. A typical real-
ization of random field is shown in Fig. 5. Some typical PDFs of the
simulated random field are plotted in Fig. 6, and compared with
the target one. The PDFs are estimated by the “ksdensity()” func-
tion in Matlab. The result shows that they match the target ones
very well.

The output variable of the model is the vertical displacement of
the central point of the footing(s), and downward movement is
considered to be positive.

4. Computed results
We perform extensive MCSs using the finite element model

presented in section 3. The extensive Monte Carlo analysis in-
volves simulation of a set of random fields for elastic modulus E,
which is followed by a batch program conducting a set of conven-
tional deterministic settlement analyses using ABAQUS. Finally,
the settlement of footing(s) for each realization is retrieved.

4.1. Single footing case
In the single footing case, 1000 simulations were considered

enough to give reasonably stable and reproducible statistical out-
put. Figure 7 shows the mean value and standard deviation of the
total settlement � as a function of the number of simulations Nsim
for a typical example. It is observed that stable results can be
obtained as Nsim reaches 1000. Furthermore, the PDF of the total
settlement � is also considered (as shown in Fig. 8). Given that the
PDF of Nsim = 1000 is very close to that of Nsim = 2000. 1000 real-

izations were considered to be economic in time without loss of
accuracy. It is noted that attention is not paid to the very small
probability level in this paper. If the very small probability level is
investigated, the number of MCS samples required shall depend
on the probability level targeted.

Following a suit of MCSs, the mean and standard deviation of
the total settlement � for different combinations of Sk and Ku can
be determined, and have been shown in Table 1 and Table 2,
respectively. It can be found that the distribution characteristic
has little effect on the mean value of the total settlement, but
greatly affects the standard deviation of the total settlement.
From the aspect of high statistical moments, the parameter of
skewness has a significant effect on the standard deviation of the
total settlement. In general, with the increase of skewness, the
standard deviation of the total settlement decreases. Taking
the case of Ku = 6 for example, the standard deviation of the total
settlement deceases by 21.9% from 4.399 mm (for Sk = 0) to
3.435 mm (for Sk = 1.5). Furthermore, the mean value of the total
settlement can be predicted by

(20) E(�) � exp�ln(�det ) � �E
2/2�

where �det is the “deterministic” settlement obtained from the
finte element method analysis when the modulus of all elements
are set to be �E, which is 10 MPa in this study. The value of �det
for the example investigated is 34.24 mm, then, according to

Fig. 4. Comparison lognormal distribution with HPM probabilistic model: (a) in linear scale; (b) in semi-log scale.

Fig. 5. Typical realization of random field of elastic modulus. [Color
online.]
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eq. (20), E(�) should be 34.92 mm. The estimated mean value of
total settlement for all the cases is very close to the predicated
value.

Fenton and Griffiths (2002) pointed out that the total settlement
can be presented well by a lognormal distribution if the elastic
modulus E is also lognormally distributed. From the knowledge of
basic statistics, if the input elastic modulus does not follow a
lognormal distribution, the distribution of output settlement may
be changed. To show how the input distribution affects the distri-
bution of output settlement, the PDFs of the estimated PDFs of

the total settlement were investigated, and comparisons were
conducted with the lognormal distribution corresponding to the
estimated mean value and standard deviation (Fig. 9). In the case
of Sk = 0.5, a good match between the estimated PDF of total
settlement and the corresponding lognormal PDF is observed,
because the value of skewness is very close to the skewness of
lognormal distribution (i.e., 0.608). While, in the cases of symmet-
rical distribution (Sk = 0) and highly skewed distribution (i.e., Sk =
1.5) of the elastic modulus, the lognormal distribution of total
settlement cannot be accepted because the estimated PDF differs
from the corresponding lognormal PDF. It means that, if SK of

Fig. 6. Comparing PDFs of simulated sample of random field with target: (a) Sk = 0.5, Ku = 5; (b) Sk = 1.5, Ku = 6.

Fig. 7. Mean value and standard deviation of total settlement as function of number of simulations: (a) mean value; (b) standard deviation.

Fig. 8. PDFs of total settlement for different number of simulations. Table 1. Mean value of total settlement.

Mean value of total settlement (mm)

Sk Ku = 4 Ku = 5 Ku = 6 Ku = 7 Ku = 8 Ku = 9

0 35.37 35.34 35.41 35.47 — —
0.5 35.14 35.12 35.14 35.14 — —
1.0 — 35.24 35.20 35.21 35.27 —
1.5 — — 35.14 35.10 35.23 35.11

Table 2. Standard deviation of total settlement.

Standard deviation of total settlement (mm)

Sk Ku = 4 Ku = 5 Ku = 6 Ku = 7 Ku = 8 Ku = 9

0 4.43 4.67 4.40 4.48 — —
0.5 3.84 3.91 4.06 3.98 — —
1.0 — 3.68 3.53 3.67 3.94 —
1.5 — — 3.44 3.39 3.31 3.43
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elastic modulus is close to the skewness of lognormal distribution
(i.e., 0.608), the assumption that the total settlement follows log-
normal distribution (as proposed by Fenton and Griffiths 2002) is
also acceptable.

In practice, the estimated displacement under expected service
load should not be greater than a selected limiting tolerable dis-
placement. Therefore, the probability that the value of total dis-
placement exceeds some thresholds is investigated. Table 3 shows
the probability, P(� > ��det), for � varying from 1 to 1.8, where � is
the constant selected to control the threshold. It is found that,
for the case of � = 1, with the increasing of skewness, the proba-
bility of the total settlement exceeding the “deterministic” settle-

ment increases. However, for the case of high value of �, with the
increasing of skewness, the probability of the total settlement
exceeding the value, ��det, decreases. It means the extremely high
values of total settlement usually occur in low skewed cases.
These extremely high values of total settlement can be explained
by the heavy tails with small value of the elastic modulus. Mean-
while, the CDFs of the computed total settlements are plotted in
Fig. 10. It is also found that, for smaller skewness of elastic mod-
ulus, the CDFs of estimated total settlement have longer tails. In
all, the case with smaller skewness of elastic modulus can be
considered as the worse one because it exhibits more probabilities
in high values of total settlement.

Fig. 9. Comparison of estimated PDFs of total settlement with corresponding lognormal distributions: (a) Sk = 0; (b) Sk = 0.5; (c) Sk = 1.0; (d) Sk = 1.5.

Table 3. Probability of total settlement exceeding a certain value.

Probability of total settlement exceeding a certain value (%)

Sk Ku � = 1 � = 1.1 � = 1.2 � = 1.3 � = 1.4 � = 1.5 � = 1.6 � = 1.7 � = 1.8

0 4 53.8 24.1 9.2 3.1 1.3 0.6 0.4 0.3 0.2
5 53.4 22.8 8.6 4.0 2.3 1.6 0.7 0.4 0
6 58.9 24.7 9.3 3.3 1.5 1.1 0.5 0.1 0
7 56.9 22.8 9.5 3.6 1.9 0.9 0.4 0.3 0.2

0.5 4 57.0 23.8 6.2 1.6 0.5 0.1 0 0 0
5 57.1 23.9 6.9 1.7 0.5 0.2 0 0 0
6 58.5 23.4 6.7 2.7 1.2 0.6 0.1 0 0
7 54.4 21.6 8.2 2.7 1.1 0.2 0.1 0 0

1.0 5 59.2 24.6 6.9 0.8 0.1 0 0 0 0
6 59.1 21.5 5.0 0.9 0.2 0.1 0 0 0
7 59.9 22.7 5.8 1.3 0.3 0.2 0 0 0
8 58.8 22.2 7.4 2.4 1.3 0.5 0.1 0 0

1.5 6 62.4 24.1 2.9 0.1 0 0 0 0 0
7 60.8 21.4 4.0 0.6 0 0 0 0 0
8 64.0 21.0 4.2 0.5 0.1 0 0 0 0
9 61.6 21.9 4.6 0.4 0 0 0 0 0
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Fig. 10. Estimated cumulative distribution functions (CDFs) of total settlement: (a) Ku = 6; (b) Sk = 1.0.

Fig. 11. Mean value and standard deviation of differential settlement as function of number of simulations: (a) mean value; (b) standard deviation.

Fig. 12. PDFs of differential settlement for different number of
simulations.

Table 4. Mean value of absolute differential settlement.

Mean value of absolute differential settlement (mm)

Sk Ku = 4 Ku = 5 Ku = 6 Ku = 7 Ku = 8 Ku = 9

0 4.97 4.78 4.96 4.97 — —
0.5 4.64 4.74 4.78 4.79 — —
1.0 — 4.37 4.51 4.61 4.33 —
1.5 — — 4.11 4.14 4.04 4.08

Table 5. Standard deviation of absolute differential settlement.

Standard deviation of absolute differential settlement (mm)

Sk Ku = 4 Ku = 5 Ku = 6 Ku = 7 Ku = 8 Ku = 9

0 4.32 4.98 5.22 5.00 — —
0.5 3.75 4.11 4.26 4.23 — —
1.0 — 3.32 3.67 3.82 3.68 —
1.5 — — 3.07 3.09 3.00 3.16

Table 6. Probability of absolute differential settlement exceeding a
certain value.

Probability of absolute differential settlement
exceeding a certain value (%)

Sk Ku � = 1 � = 1.2 � = 1.4 � = 1.6 � = 1.8 � = 2

0 4 0.7 1.3 2.1 3.9 5.1 7.4
5 0.9 1.9 3.0 4.4 6.0 7.4
6 1.9 2.7 3.5 4.7 5.8 8.3
7 1.0 2.5 3.9 5.4 6.6 8.6

0.5 4 0.2 0.6 1.0 1.9 3.4 5.3
5 0.5 0.8 1.8 2.4 3.9 6.2
6 0.4 1.1 1.8 3.3 4.5 5.6
7 0.4 0.9 2.4 3.0 4.7 6.3

1.0 5 0 0 0.3 1.0 2.0 3.7
6 0.1 0.6 0.8 1.4 2.5 4.5
7 0.2 0.4 0.8 2.3 3.7 5.2
8 0.4 0.7 0.9 1.5 2.8 4.0

1.5 6 0 0.1 0.2 0.4 0.8 2.0
7 0 0 0.2 0.4 1.1 2.7
8 0 0 0.2 0.5 0.9 2.0
9 0 0.1 0.3 0.5 1.6 2.4
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4.2. Two footing case
Consider now the case of two footings shown in Fig. 1b. Assume

that the settlements, �1 and �2, are the settlement of the left footing
and that of the right footing, respectively. The differential settle-
ment is defined as

(21) � � �1 � �2

In the two footing case, 2000 simulations were considered
enough to give stable outputs. Figure 11 shows the mean value and
standard deviation of the differential settlement � as a function of
the number of simulations Nsim for a typical example. Figure 12
shows the PDFs of the differential settlement for different number of
simulations. From the results shown in Figs. 11 and 12, Nsim = 2000 is
acceptable.

In practice, more attention should be paid to the absolute value
of differential settlement. Attention can now be turned to the
absolute value of differential settlement. Following a suit of MCSs,
the mean and standard deviation of the absolute differential set-
tlement, |�|, for different combinations of skewness and kurtosis
can be determined, and have been shown in Tables 4 and 5, re-
spectively. It is found that both the mean value and standard
deviation of the absolute differential settlement are affected by
the distribution characteristic (Fig. 13). Compared to kurtosis,
skewness has a more significant effect. Generally, with the in-
crease of skewness, both the mean value and standard deviation
of the absolute differential settlement decrease. Taking the cases
of Ku = 6 for example, the mean value deceases by 16.9% from
4.956 (for Sk = 0) to 4.111 (for Sk = 1.5), and the standard deviation
deceases by 41.2% from 5.222 (for Sk = 0) to 3.069 (for Sk = 1.5).

To avoid upper-structure damage, the absolute differential set-
tlement should be limited to a certain value, e.g., |�|lim = D/360
(Fenton and Griffiths 2002), which is 23.3 mm in this study,
where D is the distance between footings centers. The proba-
bility that the value of the absolute differential settlement ex-
ceeds some threshold is investigated. Table 3 shows the probability,
P(|�| > |�|lim/�) (with � varying from 1 to 2), representing the
probability of differential settlement exceeding the limit value
|�|lim when the load is � times of the design load F (i.e., F = 300 KN).
It is found that, with the increasing of skewness, the probability of
the absolute differential settlement exceeding |�|lim/� increases.
It means that the extremely high values of absolute differential
settlement usually occur in low skewed cases of elastic modulus.
Meanwhile, the CDFs of the computed differential settlements are
plotted in Fig. 12. It is also found that, for smaller value of skew-
ness, the CDFs of estimated total settlement have longer tails. In
all, the case of smaller value of skewness can be considered as
worse because it produces more probabilities in high values of
differential settlement.

5. Conclusions
The effects of the first four statistical moments defining the

statistical characteristic of elastic modulus on the probabilistic
foundation settlement were investigated. To that end, a method
to simulate nonGaussian homogenous field based on the first four
statistical moments was proposed. This method combines the the-
ory of HPM and SRM, and it provides a way to generate random
field of soil properties, whose distribution characteristic is de-
fined by the first four statistical moments. The proposed method
was utilized to simulate the random field of elastic modulus for
the study of probabilistic characteristic of the total settlement
and the differential settlement of shallow foundations. On the
basis of the Monte Carlo simulations (MCSs), the following obser-
vations can be made:

1. Skewness and kurtosis of elastic modulus have little effect on
the mean value of the total settlement, but they, especially the
value of skewness, greatly affect the standard deviation of the
total settlement. Compared to kurtosis, skewness of elastic
modulus has a more significant effect on the distribution char-
acteristic of total settlement, and the case with smallest value
of skewness is considered as the most dangerous one.

2. Skewness of elastic modulus affects both the mean and stan-
dard deviation of the absolute differential settlement, and the
influence of skewness is more significant. Similar to the re-
sults of total settlement, the skewness of elastic modulus has a
more significant effect on the distribution characteristic of
differential settlement, and the case with smallest value of
skewness is considered as the most dangerous one.

The results of this study suggest that the identification of the
skewness of elastic modulus is extremely important. In practice,
more attention should be paid to low skewed case because it may
result in an unexpected large total settlement or differential set-
tlement. However, the aforementioned results are obtained based
on certain autocorrelation structures; the effects of autocorrela-
tion structure on the results are not discussed, which needs to be
further investigated.

One of the most important contributions of this study is the
concept of estimating the probabilistic characteristic of (differ-
ential) settlement of shallow foundations based on the first four
moments of elastic modulus. The present study paves the way
towards better estimation of probabilistic foundation settlement.
However, a simple and general way to calculate the probability of
(differential) settlement exceeding a certain value is yet to be
found. The proposed method to simulate nonGaussian homoge-
nous field based on the first four statistical moments can be ap-
plied to simulate other random fields in civil engineering.

Fig. 13. Estimated CDFs of absolute differential settlement: (a) Ku = 6; (b) Sk = 1.0.
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