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Abstract The elastic properties of a regular packing of
spheres with different tolerances were evaluated using the
discrete element method to elucidate the mechanisms behind
the discrepancies between laboratory experiments and theo-
retical predictions of the classic Hertz-Mindlin contact law.
The simulations indicate that the elastic modulus of the pack-
ing is highly dependent on the coordination number and the
magnitude and distribution of contact normal forces, and this
dependence is macroscopically reflected as the influence of
confining pressure and void ratio. The increase of coordi-
nation number and the uniformity of contact normal forces
distribution with increasing confining pressure results in the
stress exponent n for elastic modulus being higher than 1/3
as predicted by the Hertz-Mindlin law. Furthermore, the sim-
ulations show that Poisson’s ratio of a granular packing is not
a constant as commonly assumed, but rather it decreases as
confining pressure increases. The variation of Poisson’s ratio
appears to be a consequence of the increase of the coordina-
tion number rather than the increase of contact normal forces
with confining pressure.
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1 Introduction

It is well agreed in soil mechanics that the elastic shear mod-
ulus G0 or Young’s modulus E0 of a dry granular soil (e.g.
sand and gravel) highly depends on void ratio (e) and con-
fining pressure (P) and can be expressed by a general form
as follows [1,2]:

G0 (or E0) = AF(e)

(
P

Pa

)n

(1)

where A is a constant reflecting soil type, grain properties
and fabric, Pa is a reference stress typically taking a value
of 98 kPa, n is the stress exponent reflecting the effect of
confining pressure, and F(e) is a void ratio function reflecting
the effect of soil density.

Given their vital importance in geotechnical engineering
applications, extensive experimental studies have been car-
ried out in the past decades to estimate the elastic properties
for various granular soils under a range of conditions [3–8].
The experimental results have consistently showed that n
value for shear modulus generally ranges between 0.4 and
0.6, which is always larger than the value of 1/3, predicted by
the classical Hertz-Mindlin contact law [9,10]. Several stud-
ies on quartz sand also showed that n value for shear modulus
increases with increasing the coefficient of uniformity of sand
[11] and with increasing void ratio of the assembly [12].

There are currently two major explanations for the discrep-
ancy of n values between experimental data and theoretical
prediction. The first explanation attributes it to the discrep-
ancy between the Hertz-Mindlin contact law and the actual
contact condition, thus leading to several modified contact
laws. For example, Goddard [13] proposed a contact law for
conical contacts of which the stress exponent n changes from
1/2 to 1/3 when the confining pressure exceeds a transition
value. However, there is experimental evidence that values
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Fig. 1 Measured elastic shear modulus versus normalized confining
pressure (data from [8,12]): a glass beads; b quartz sand

of n for assemblies of spherical steel balls and glass beads
are similar to that for angular sands [8,9,14,15]. An example
is here given in Fig. 1, showing laboratory measurements of
the elastic shear modulus of spherical glass beads and quartz
sand at a range of pressures, obtained by Yang and Gu [8,12]
using the resonant column technique. Yimsiri and Soga [16]
modified the Hertz-Mindlin contact law by accounting for
grain surface roughness and predicted an n-value of 0.55.
With this modified contact model, Poisson’s ratio is predicted
to increase as confining pressure increases, which is however
in contrast to the experimental observations [5,17,18].

The second possible explanation for the discrepancy is
the change of fabric during the increase of confining pres-
sure that causes an additional increase in stiffness [8,19].
In the experiments of Duffy and Mindlin [9] on face-
centered cubic packings of steel balls, two types of steel balls
were used, including high tolerance spheres with diameters
1/8 ± (10 × 10−6) in. (HTS) and low tolerance ones with
diameters 1/8 ± (50 × 10−6) in. (LTS). It is interesting to
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Fig. 2 Longitudinal wave velocity versus confining pressure (data
from [9])

note that the measured longitudinal wave velocity in the LTS
is much lower than that in the HTS, but both are significantly
lower than the theoretical prediction, particularly at low con-
fining pressures (Fig. 2). Meanwhile, the stress exponent n
for elastic modulus from the experiments is higher than the
predicted value 1/3, especially in the LTS. Duffy and Mindlin
speculated that the discrepancy was probably due to the evo-
lution of contacts between the steel balls. However, how the
contact number evolutes and how it affects the stiffness are
not yet well understood.

For an isotropic elastic continuum, shear modulus and
Young’s modulus can be linked by Poisson’s ratio ν as the
following:

υ = E0

2G0
− 1 (2)

Laboratory experiments on granular soils showed that Pois-
son’s ratio decreases as confining pressure increases and as
void ratio decreases [5,18]. It was also reported that Poisson’s
ratio of sand depends on the coefficient of uniformity [7].
However, based on the Hertz-Mindlin contact law, Chang
et al. [20] obtained Poisson’s ratio for a random isotropic
packing as follows:

υ = υg

2(5 − 3υg)
(3)

where υg is the Poisson’s ratio of the grain. Equation (3) pre-
dicts that Poisson’s ratio of a granular material is an extremely
small constant (e.g. υ = 0.037 for υg = 0.30), which is
inconsistent with experimental data that Poisson’s ratio of
glass beads and quartz sand has typical values of 0.2–0.3 and
varies with confining pressure [18].

This paper presents a numerical study aimed to address the
above issues on elastic properties of granular materials that
are of fundamental importance. By means of a grain-scale
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Fig. 3 Regular packing (40 × 40 balls) used in DEM simulations

modeling technique known as discrete element method
(DEM), the elastic properties of a regular packing of spheres
with different tolerances are evaluated. The microstructure
of the packing during the increase of confining pressure,
including contact number, contact normal forces and their
evolution, is investigated. Particularly, the link between the
microstructure and the macroscopic elastic properties is
explored to elucidate the mechanisms behind the pressure
dependence of elastic properties.

2 Numerical simulation

The DEM simulations were conducted using PFC2D [21] on
a regular packing with 40 ×40 balls (Fig. 3), whose nominal
diameter (D) was set to be 2.0 mm. Similar to the physical
tests of Duffy and Mindlin [9], five tolerances (Tr ) of the balls
were considered, namely Tr = 0, 0.008, 0.04, 0.2 and 1 %.
For each tolerance, balls with diameters in the range of D(1±
Tr ) were randomly generated to form a uniform distribution.
The Hertz-Mindlin contact law was adopted to describe the
force-dependent contact stiffness. The basic parameters for
the DEM simulations are summarized in Table 1.

Following the procedure similar to laboratory experiment
[22], the packing was first isotropically consolidated to dif-
ferent confining pressures and at each confining pressure a
drained biaxial test was then conducted at very small strain.
In doing that, a small axial strain increment �ε1 was applied,
while the radial stress σ3 was kept constant by servo control
until the shear strain �γ = �ε1−�ε3 reached 10−6 (Fig. 3).

Under this condition, the elastic Young’s modulus E1, shear
modulus G13 and Poisson’s ratio υ13 can be determined as
follows:

E1 = �σ1

�ε1
(4)

G13 = �τ

�γ
= �σ1/2

�ε1 − �ε3
(5)

υ13 = −�ε3

�ε1
(6)

Note that the first number in the subscript denotes the loading
direction.

3 Results and discussion

3.1 Macroscopic elastic properties

Figure 4 shows typical stress-strain curves for the specimen
of Tr = 0.2 % at the confining pressure (P) of 100 kPa. Obvi-
ously, the specimen behaves in a linear manner at this small
strain level. Given the stress-strain curves at different con-
fining pressures, the elastic Young’s modulus E1 and shear
modulus G13 can be determined as a function of P , as shown
in Fig. 5 for all five specimens. The void ratios of the spec-
imens at different confining pressures were also determined
and summarized in Table 2.

A comparison of Figs. 2 and 5 shows a strong similar-
ity between simulations and experimental data in terms of
the pressure dependence of elastic modulus. At a constant
confining pressure, both shear modulus and Young’s mod-
ulus decreases as Tr increases. Furthermore, for both shear
modulus and Young’s modulus, the rate of variation with
pressure tends to decrease as pressure increases, especially
for specimens with high Tr values at low pressures. Note
that at a given confining pressure, the specimens of different
tolerances have almost the same void ratios but significantly
different values of elastic moduli, implying that the fabric of
the packing in terms of number of contacts and contact forces
plays an important role.

For better illustration, the moduli in the pressure range of
10–1,000 kPa are fitted by Eq. (1) (modulus in MPa and pres-
sure in kPa) and the best-fit parameters are given in Table 3. It
is interesting to note that, although the Hertz-Mindlin contact
law was used in the simulations, all n values are larger than

Table 1 Parameters for
simulations Wall stiffness Rigid No. of particles 1,600

Wall-particle friction 0 Particle diameter 2.0 mm (nominal)

Contact law Hertz-Mindlin Particle density 2,600 kg/m3

Particle shape Spherical Shear modulus and
Poisson’s ratio of particles

29 GPa; 0.15

Thickness of sample 2.0 mm Inter-particle friction coefficient 0.5
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Fig. 4 Stress-strain curves of a regular packing of spheres with
Tr = 0.2 % at confining pressure of 100 kPa: a �σ1−�ε1 and b �τ−�γ

1/3 except for the case of Tr = 0 %, for which the stress expo-
nent is almost exactly 1/3, and that the stress exponent n gen-
erally increases as Tr increases. This result indicates that the
stress exponent not only reflects the stress-dependent contact
stiffness, but also the fabric of the packing associated with
contact number and contact force. Moreover, for each pack-
ing the stress exponent n for shear modulus is always larger
than that for Young’s modulus, suggesting that the former
increases faster than the latter as confining pressure increases.

Figure 6 presents the calculated values of Poisson’s ratio
υ13 at different pressures for the specimens with different tol-
erances. Evidently, Poisson’s ratio deceases with increasing
confining pressure except for the case of Tr = 0 % where it
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Fig. 5 Variation of elastic modulus with confining pressure: a E1 and
b G13

is a constant. The values of Poisson’s ratio are significantly
different at different Tr values, especially at low confining
pressures. Figure 6 suggests that besides confining pressure,
there are other influencing factors for Poisson’s ratio, as will
be discussed later.

3.2 Macroscopic characteristics

Due to the particulate nature, contacts bear and transfer the
loads in a granular material. Therefore, the contact number,
contact force and its distribution are all expected to play an
important role in macroscale stiffness. Here, two conceptual
models are proposed (Fig. 7) to illustrate the importance of
contact number and the distribution of contact force. In the

Table 2 Void ratios and
coordination numbers of
packings under various
conditions

P (kPa) e, C N

Tr = 0 % 0.008 % 0.04 % 0.2 % 1 %

10 0.121, 5.97 0.121, 5.50 0.121, 3.92 0.122, 3.53 0.127, 3.71

50 0.121, 5.97 0.121, 5.96 0.121, 4.83 0.122, 3.90 0.127, 3.79

100 0.121, 5.97 0.120, 5.97 0.120, 5.18 0.120, 4.10 0.127, 3.85

500 0.120, 5.97 0.120, 5.97 0.120, 5.93 0.120, 4.70 0.126, 4.03

1,000 0.119, 5.97 0.119, 5.97 0.119, 5.97 0.120, 5.06 0.125, 4.20
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Table 3 Fitting results of elastic moduli using Eq. (1)

Tr (%) E1 G13

AF(e) n AF(e) n

0 762.0 0.332 373.5 0.332

0.008 743.7 0.359 363.0 0.364

0.04 596.0 0.478 276.5 0.519

0.2 443.5 0.490 189.3 0.543

1 407.9 0.413 174.6 0.443
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Fig. 6 Variation of Poisson’s ratio with confining pressure
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Fig. 7 Models illustrating the importance of (a) contact number (b)
distribution of contact forces

first model, the external force H is evenly distributed to N
identical particles and the stiffness of the assembly is found
to be proportional to H1/3 and N 2/3 when the Hertz-Mindlin
contact law is used. It indicates that for a constant external
force (or pressure), the stiffness of the assembly increases as
contact number N increases. In the second model (Fig. 7b),

Table 4 Effect of contact force distribution on stiffness

α k1/Keven k2/Keven K/Keven

0.5 0.50 0.50 1.00

0.4 0.45 0.55 0.99

0.3 0.39 0.59 0.98

0.2 0.32 0.63 0.95

0.1 0.22 0.67 0.89

0 0.00 0.71 0.71

k1 and k2 contact stiffness of particle 1 and 2, respectively, K the overall
stiffness, Keven the overall stiffness at even distribution of the contact
force
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Fig. 8 Variation of coordination number (CN) with confining pressure

the external force H is distributed to two contacts and the
uniformity of distribution is controlled by a factor α. The
stiffness of the assembly decreases continuously as the uni-
formity of force distribution decreases (i.e. α decreases), as
seen in Table 4.

Given the above consideration based on the conceptual
models, the evolution of coordination number CN (i.e. the
average number of contacts per particle) with increasing con-
fining pressure P was examined for all specimens of different
tolerances, as shown in Fig. 8. Note that only the particles
with more than two contacts were used to calculate CN, while
all particles were used to evaluate the void ratio [23]. As
seen in Fig. 8, for Tr = 0 %, CN keeps constant as pres-
sure increases and the value of stress exponent n for elastic
moduli is 1/3, exactly the same as that predicted by the Hertz-
Mindlin contact law. However, for Tr = 0.008 and 0.04 %,
CN increases as pressure increases until all the contacts make.
For Tr = 0.2 and 1.0 %, the value of CN is well below the
maximum, even at the pressure level as high as 1,000 kPa.
Figure 8 provides strong evidence showing that the value of
stress exponent n is closely related to the evolution of CN.

It should be emphasized that the coordination number cor-
relates well with the magnitude of contact force at a constant
confining pressure. To make this point, the average contact
normal force, Favg, was normalized by confining pressure,
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P , and then was presented as a function of CN, as shown in
Fig. 9. Obviously, the value of Favg/P decreases as coor-
dination number increases and the relationship is unique

irrespective of the degree of tolerance. In addition to the
magnitude, the distribution of contact normal forces is also
thought to be a key factor because it determines the distribu-
tion of contact stiffness. Figure 10 shows the distribution of
contact normal force F normalized by the maximum contact
normal force Fmax at different levels of confining pressure.
In Fig. 10, R is the ratio of Favg to Fmax, and δ is the standard
deviation of the normalized contact normal forces, given by

δ =
√∑N

i=1 (Fi/Favg − 1)2

N
(7)

where Fi is the magnitude of the normal force at the i th
contact and N is the total number of contacts.

Figure 10 indicates that even for a regular packing of
spheres under isotropic confinement, the distribution of con-
tact normal forces is far from uniform distribution, especially
at low confining pressures. As confining pressure increases,
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Fig. 11 Statistics of number of contacts based on normalized contact
normal force for packings of different Tr values: a P = 100 kPa,
b P = 1,000 kPa

the curves shift to right and the values of R increase while
δ decreases, indicating that the distribution of contact nor-
mal forces becomes more uniform. For better illustration,
the distributions of contact normal forces for specimens with
different Tr values are compared, as shown in Fig. 11. Appar-
ently, at a constant pressure the distribution of contact nor-
mal forces is more uniform in the specimen with a smaller
Tr value.

3.3 Links between macroscopic properties and microscopic
characteristics

Bearing in mind the analysis of the conceptual model in
Fig. 7a, the elastic shear modulus and Young’s modulus
are normalized by P1/3 and then plotted against C N 2/3, as
shown in Fig. 12. It is interesting to note that there is a good
correlation between normalized modulus and C N 2/3, except
at low values of CN (i.e. low levels of pressure) correspond-
ing to non-uniform distribution of contact normal forces, as
indicated by Figs. 10 and 11.

To account for the non-uniform distribution of contact nor-
mal forces, each contact is multiplied by a factor defined as
(Fi/Favg)

1/3, and the coordination number is re-calculated
based on the weighted contact and denoted as CN ′. It is strik-
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Fig. 12 Relation between elastic modulus and coordination number:
a E1/P1/3 versus C N 2/3; b G13/P1/3 versus C N 2/3 (modulus in MPa,
pressure in kPa)

ing that the normalized elastic modulus linearly increases
with C N

′2/3, as shown in Fig. 13. These results suggest that
the coordination number and the distribution of contact nor-
mal forces are the predominant factors for the elastic stiffness
of granular materials. Recalling the physical tests by Duffy
and Mindlin [9], the difference between the specimens with
high and low tolerance steel balls can be reasonably explained
as the difference of coordination number and distribution of
contact normal forces, although their void ratios are nearly
the same.

Meanwhile, it is found that Poisson’s ratio decreases as
C N

′2/3 increases, as shown in Fig. 14. By comparing Figs. 6
and 14, it can be concluded that Poisson’s ratio of a granular
packing is essentially dependent on the coordination number.
A probable explanation for the laboratory observation that
Poisson’s ratio decreases as void ratio decreases or as confin-
ing pressure increases is the increase of coordination number
due to the increase of confining pressure or packing density.

4 Conclusions

The elastic properties of a regular packing of spheres with dif-
ferent tolerances were numerically evaluated by DEM mod-
eling, and particular effort was made to link the macroscopic
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elastic properties with the microstructure of the granular
packing to elucidate the mechanisms involved. The main
findings of this study can be summarized as follows.

(a) The stress exponent n for both shear modulus and
Young’s modulus of the packing of spheres with Tr =
0 % is 1/3, exactly same as the prediction by the
Hertz-Mindlin contact law. All other packings with

non-zero Tr values show, however, that the n value
is greater than 1/3 and it generally increases as Tr

increases. This result suggests that the stress expo-
nent reflects not only the stress-dependent contact stiff-
ness but also the evolution of microstructure during the
increase of confining pressure.

(b) At the particle level, both shear modulus and Young’s
modulus are highly dependent on the coordination num-
ber and the magnitude and distribution of contact normal
forces. With increasing confining pressure, the coordina-
tion number increases and the distribution of contact nor-
mal force becomes more uniform, which lead to further
increase of elastic moduli in addition to that caused by
the increase of the magnitude of contact normal forces.

(c) Poisson’s ratio generally deceases with increasing con-
fining pressure, except for the case of packing with
Tr = 0 % where it is a constant. Given a confining
pressure, the values of Poisson’s ratio are significantly
different for packings with different Tr values. At the
particle level, this phenomenon appears to result from
the increase of coordination number rather than the
increase of contact normal forces with the increase of
confining pressure.

(d) By defining a weighted coordination number CN ′, a
unique linear relationship is found between C N

′2/3 and
the elastic moduli normalized by P1/3, and this rela-
tionship holds for all packings with different tolerance
spheres and under a range of confining pressures.
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